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Introduction

Game semantics provide precise models of various programming languages. Around 1994, Abramsky et
al. [AMJ94] and Hyland and Ong [HO00] proposed two constructions of a full abstract model of the purely
functional language PCF. We focus on the model of Hyland and Ong, which has been adapted to handle
control operators [Lai97] and references [AHM98]. In these games, plays are traces of interaction between
a program (player P ) and an environment (opponent O). A program is interpreted by a strategy for P
which represents the interactions it can have with any environment. Control operators and references are
modeled by relaxing constraints on the strategies corresponding to pure functional programming. Different
programming primitives can thus be modeled in a common framework parametrized by the class of strategies
considered.

This work studies the representation of set-theoretic functions on infinite sequences by strategies of
Hyland-Ong games, and conversely, wether these strategies represent some set-theoretic functions on infinite
sequences.The main motivation is the possible definition of (modified) realizability models (see e.g. [Tro98])
based on game semantics.

We define a notion of representation of functions on infinite sequences and investigate the following
questions: wether representable functions are continuous; wether continuous functions are representable;
and wether strategies of a given class do represent a function.

This report is organized as follows. The first part defines existing notions of topology and Hyland-Ong
games. In a second part we define our notion of representation. The third part is devoted to the proof
of equivalence between continuous and representable functions. In the fourth part we give some sufficient
conditions for a strategy to represent a function.

1 Preliminaries

1.1 Topology

If α is a sequence in Xω (the set of infinite sequences on set X), then αi denotes the ith term of α. We give
the set of sequences of a set X the product topology of the discrete topology on X. A basis of open sets of
Xω is then the set of Ox0...xn

where x0 . . . xn is a finite sequence on X, defined by:

Ox0...xn
= {α ∈ Xω|α0 = x0 . . . αn = xn}

and a prebasis is the set of:
{α ∈ Xω|αn = x}

where x ∈ X and n ∈ ω.
Therefore, if X = {0, 1}, we get the Cantor space, and if X = ω, we get the Baire space (see [Kec95]).

In this context, a function f from Xω to Y ω is continuous if:

∀α ∈ Xω,∀m ∈ ω,∃n ∈ ω,∀β ∈ Xω, β0 . . . βn = α0 . . . αn ⇒ f(β)m = f(α)m

The idea is that in order to have a token of information on the output (the value of f(α)m), we only need
to know a finite amount of information on the input.
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1.2 Hyland-Ong games

In Hyland-Ong games, programs are interpreted by strategies and plays (sequences of moves) represent
execution traces. We mainly use the definitions of Harmer’s PhD thesis [Har99].

1.2.1 Arenas, plays and strategies

Plays occur in arenas which are sets of moves together with an enabling relation.

Definition 1 (Arenas). An arena A is a set of moves MA together with a binary relation `A⊆MA×MA,
called enabling, which induces a forest on MA.

There are two players: player (P ) and opponent (O), who play moves alternatively.

Definition 2 (Polarity). To each move m of an arena A, we associate a polarity in {O;P}, depending on
the parity of the depth of m into the forest induced by `A: if m is at even depth (which is the case for the
roots), then m is given the polarity O, otherwise m is given the polarity P .

The O-moves are the moves made by the environment, whereas the P -moves are those made by the
program. The moves will be often be denoted as aPX where a belongs to X and P is the polarity of the
move (which depends on the arena). A move which is a leaf is called an answer, and all other moves are
called questions (in other settings, a leaf can be a question and an answer is not necessarily a leave, see for
instance [AHM98]).

We are only interested in arenas which are inductively built from flat arenas and the arrow constructor.
These arenas will always be trees.

Definition 3. • If A is set, the corresponding flat arena is defined by:

MA = {qOA} ∪ {aP |a ∈ A} and ∀a ∈ A, qOA `A aP

which can be depicted as:
qOA

�������

2222222

AP

• If A and B are arenas, the arena A→ B is defined by:

MA→B =MA ]MB

m1 `A→B m2 ⇐⇒


m1 ∈MA

m2 ∈MA

m1 `A m2

or


m1 ∈MB

m2 ∈MB

m1 `B m2

or


m1 ∈MB

m2 ∈MA

∀m′1 ∈MB ,m
′
1 0B m1

∀m′2 ∈MB ,m
′
2 0B m2

Schematically, if A and B are arenas which are trees, the arena A→ B is:

B

A

Remark that the polarity of a move in A is the opposite of its polarity in A→ B.
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Figure 1: the arena (ω → X)→ (ω → Y )

We are mainly interested in working on maps from sequences to sequences, the corresponding arena being
described in Figure 1. The moves of this arena are the following: qOY , qPX , qPω , qOω are moves, and Y P , XO,
ωO, ωP are sets of moves respectively isomorphic to Y , X, ω, ω. The moves which are questions are denoted
q, with the concerned set in subscript and the polarity in superscript.

Plays are represented by pointed sequences, which are sequences of moves, some of them having a pointer,
which points to a preceding move.

Definition 4 (Pointed sequence). A pointed sequence of moves in the arena A is a word w ∈M∗A together
with a pointer function f : {0; . . . ; |w| − 1} → {−1; . . . ; |w| − 1} such that ∀i, f(i) < i.

This means that if (w, f) is a pointed sequence, the move wi points to wf(i) if f(i) 6= −1, and wi doesn’t
have a pointer if f(i) = −1. If wi points to wj , we say that wj enables wi and that wi is justified by wj .
From now on we do not write explicitely the pointer function.

Definition 5 (Pointed prefix). If w is a pointed sequence, we define for k ∈ {−1; . . . ; |w| − 1} the prefix of
w ending with wk (denoted w|k) which keeps the same pointers.

It is then easy to see that w|k is a pointed sequence. A play is a pointed sequence on which we impose
some constraints:

Definition 6 (Play). A play on the arena A is a pointed sequence of moves w which is alternating (the
polarities of moves in w alternate), and which satisfies:

∀i,

{
if wi is justified by wj, then wj `A wi
if wi is not justified, then ∀m ∈MA,m 0A wi (i.e.: wi is a root of A)

If w is a play, then a move m with its pointer is be said legal if wm is still a play. By definition of a
pointed sequence, if w is a non-empty play, then w0 is not justified, which means that w0 is a root of the
arena, and therefore has polarity O, so by alternation, we get for any play w:

∀i, w2i has polarity O, and w2i+1 has polarity P

We now define strategies.

Definition 7 (Strategy). A strategy σ on the arena A is a non-empty set of even-length plays, which is
closed under even-length prefixes and which is deterministic: if w and w′ are plays in σ such that:

|w′| = |w| = n ∧ w′|n−2 = w|n−2

then we have w′n−1 = wn−1, which means w′ = w.

3



WT SWT IWT

W

����
SW

����
IW

����

T ST IT

ε

����
S

����
I

����

S = single threaded
I = innocent
W = well bracketed
T = total
ε = all strategies

Figure 2: The class of strategies parallelepiped

If we are given two strategies σ and τ respectively on the arenas A → B and B → C, then we can
compose them to obtain the strategy σ; τ on the arena A → C. The polarities of the moves in B being
opposite in the arenas A → B and B → C, we can copy each P -move of σ in B as a O-move in B → C
and each P -move of τ in B as a O-move in A → B. The identity on arena A → A uses the same trick: a
O-move in one of the A is a P -move in the other and conversely a P -move in one of the A is a O-move in
the other. The identity is then a simple copycat strategy. This gives us a category which objects are arenas
and morphisms are strategies.

We use the application of strategies, which is slightly simpler than the composition: if σ is a strategy
on A → B and if τ is a strategy on A, τ can be seen as a strategy on > → A, so the composition τ ;σ is a
strategy on > → B, which can be seen as a strategy on B. Then σ(τ) denotes the application of τ to σ,
which is a strategy on B. Application can also be defined more shortly as:

σ(τ) = {u|B |u|B alternating ∧ u ∈ σ ∧ u|A ∈ τ}

1.2.2 Constraining strategies

A important parameter of strategies is to which extent they have access to the history of a play. In the
above definition, strategies have access to the whole history. However, precise interpretations of programming
languages require some restriction on the available history, such as single threadness and innocence. It is also
possible to restrict the control flow, for instance by imposing a bracketing condition. Innocence together with
well bracketing corresponds to purely functional languages (see [HO00]). Relaxing well bracketing allows to
model control operators (see [Lai97]), and relaxing innocence to single threadness allows to model references
(see [AHM98]). The corresponding classes of strategies are depicted in the parallelepiped of Figure 2. We
now give the definitions of these restrictions.

We first define the notion of single threaded strategy. If w is a non-empty play, then by following the
pointers from the last move, we eventually find a move which is not justified. This move is called the
hereditary justifier of w and is denoted HJ(w). The thread dwe of a play w is the pointed subsequence
containing the moves of the play which have the same hereditary justifier as that of the last move of the
play. More precisely:

Definition 8 (Thread). If w is empty, then dwe = dεe = ε. If w is a non-empty play, let write:

I = {0 ≤ i < |w|, HJ(w|i) = HJ(w)} = {i0; . . . ; ip}

with i0 < i1 < · · · < ip, then dwe is wi0 . . . wip with pointers inherited from w.

A play is said well threaded if each P -move of w has the same hereditary justifier as the preceding O-
move. A well threaded play is a play in which P plays in the same thread as the one of the last O-move.
This is equivalent to say that each P -move points to the current thread. In a well threaded play, only O can
switch thread. We have the property that the thread of a well threaded play is itself a play. Indeed, we just
have to verify that it is alternating. This is the case because after a O-move (resp. before a P -move) of the
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thread comes a P -move (resp. a O-move) (by alternation of the initial play) which is in the same thread (by
well threadedness). Well threaded plays are defined as follows:

Definition 9 (Well threaded play). A play w is well threaded if:

∀i ≥ 0, 2i+ 1 < |w| ⇒ HJ(w|2i+1) = HJ(w|2i)

A single threaded strategy is such that if after a O-move, the current thread is answered in some play of
the strategy, then it is answered in the current play, with the same answer. This means that the strategy
cannot benefit from the informations of the other threads of the current play. The precise definition is:

Definition 10 (Single threaded strategies). A strategy σ is single threaded if all its plays are well threaded
and if for two well threaded plays w,w′ with |w| = n, |w′| = n′ satisfying:

w ∈ σ,w′|n′−3 ∈ σ, dwe = dw′e

we have w′ ∈ σ.

We now define the notion of innocent strategy. The view pwq of a play w is obtained by going backwards
from the end of w, jumping over P -moves and following all the pointers from O-moves (and therefore stopping
on a root). The formal definition is:

Definition 11 (View). The view is defined by:

1. pεq = ε

2. pwaP q = pwqaP with aP pointing to the same move as before if it is in pwq, otherwise it has no pointer

3. pwaP vbOq = pwaP qbO if bO points to aP

A given play satisfies visibility if for every prefix waP of it, aP points to a move in pwq. This means that
the justifier of any P -move is not jumped over by some O-move pointer. If a play satisfies visibility, then
its view is itself a play, in which each O-move points to the preceding move. It is not difficult to see that
a play which satisfies visibility is in particular well threaded, and that in this case, the view is a pointed
subsequence of the thread.

A strategy is said innocent if it satisfies: if after a O-move, the current view is answered in some play of
the strategy, then it is answered in the current play, with the same answer. This means that the strategy
cannot benefit from the informations of the other threads nor the moves between a O-move and its justifier.
The class of innocent strategies is formally defined as:

Definition 12 (Innocent strategies). A strategy σ is innocent if all its plays satisfy visibility and if for two
well threaded plays w,w′ with |w| = n, |w′| = n′ satisfying:

w ∈ σ,w′|n′−3 ∈ σ, pwq = pw′q

we have w′ ∈ σ.

Finally we define the notion of well bracketed strategy. Well bracketed plays are such that each answer
is an answer to the most recent unanswered question. This is a constraint on the control flow. Formally:

Definition 13 (Well bracketed play). A play w is well bracketed if for each 0 ≤ i < |w|, if wi is an answer
pointing to the question wj, then:

• for all wk between wj and wi, if wk is a question, then there is a move between wk and wi which is an
answer and which points to wk

• for all wk between wj and wi, if wk is an answer, then it does not point to wj
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A well bracketed strategy is a strategy which preserves well bracketing:

Definition 14 (Well bracketed strategies). A strategy σ is well bracketed if for any w ∈ σ with |w| = n, if
w|n−2 is well bracketed then so is w.

A total strategy is a strategy which can always answer to a legal O-move:

Definition 15 (Total strategies). A strategy σ is total if for any play w with |w| = n, if w|n−2 ∈ σ, then
there exists w′ ∈ σ such that |w′| = n+ 1 and w′|n−1 = w.

From now on, C will denote a class of strategies which can be any node in the parallelepiped of Figure 2.
If we restrict the category of arenas and strategies to the particular cases of single threaded/innocent/well

bracketed strategies, we obtain a sub-category. Indeed, it is true that all the classes of strategies on the front
face of the parallelepiped of Figure 2 are stable by composition and contain the copycat strategy (see for
instance [Har99]). Innocence and well bracketing are preserved by application.

2 Representation of functions

In this section we introduce and define the main concept we are interested in: what it means for a strategy σ
on the arena (ω → X)→ (ω → Y ) to represent a function f from Xω to Y ω. Representation is parameterized
by a class C of strategies and denoted σ C f .

Our definition is inpired by realizability and proceeds by induction on the arenas which are inductively
built according to Definition 3. To each such arena we associate a set interpretation as follows:

• The set interpretation of a flat arena A is AP (the set of its leaves).

• The set interpretation of the arrow arena A→ B is the set of functions from the set interpretation of
A to the set interpretation of B.

Hence the set interpretation of the arena (ω → X) → (ω → Y ) is the set of functions from Xω to Y ω. We
write a ∈ A if a belongs to the set interpretation of the arena A.

Definition 16 (Representation C). Let C be a class of strategies.
Let A be an arena inductively defined according to Definition 3. Representation σ C a of an element

a ∈ A of the set interpretation of the arena A by strategy σ on the arena A w.r.t. C is defined by induction
on the construction of A:

• If A is a flat arena and a ∈ A, we have σ C a iff σ is in C and contains the play:

A
q
a

• If A is the arena B → C, and f : B → C, then σ C f iff σ is in C and forall b ∈ B and τ C b, we
have σ(τ)  f(b).

An element is said to be representable if it is represented by a strategy.

Remark 1. The choice for the representation of flat arenas can be discussed. Indeed, we ask for a rep-
resentant to answer the represented object at the first time. Another choice would have been to ask the
representant to always answer the represented object, which is a more rigid definition and allows to remove
the single threadedness condition in some propositions. Yet another choice would have been to ask for the
strategy to answer at least once the represented object, in which case a strategy can represent countably many
objects. This choice is still to be investigated.

We define strategies representing arbitrary integers and sequences.
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Definition 17. • If m ∈ ω, define τm as the innocent strategy which views are even-length subplays of:

ω

qOω

mP

i.e.: τm = (qOωm
P )∗.

• If α ∈ Xω, define τα as the innocent strategy which views are even-length subplays of:

ω → X

qOX

qPω

nO

αPn

These strategies are in some sense “canonical”, and it is easy to see that they have good properties:

Proposition 1. • τm and τα are innocent.

• τm and τα are well bracketed.

• For any C, τm C m and τα C α

Proof. We only prove the third point:
ω being a flat arena, we immediately have τm C m.
Let now m ∈ ω and τ C m, i.e. τ contains the play:

ω

qOω

mP

τα contains the following play w:
ω → X

qOX

qPω

mO

αPm

Moreover, w|ω ∈ τ and w|X is the play:
X

qOX

αPm

So we have τα(τ) C αm, and so τα C α.

3 Representability and continuity

In this section we study the connection between representability and continuity. We show that:

• For any C, a C-representable function is continuous.

• Any continuous function is C-representable if C contains only single threaded strategies.

We also give a counter-example which proves that the single threadness hypothesis is necessary for the second
point.
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3.1 Every representable function is continuous

It is quite simple to see that a map from sequences to sequences which is representable is continuous. We’ve
seen that a continuous function is a function for which a finite information on the output is determined by
a finite information on the input. On the other hand an interaction is a finite sequence of moves, so only a
finite number of terms of the input appear in it.

Theorem 1. For any C, if f : (ω → X)→ (ω → Y ) is C-representable, then f is continuous.

Proof. Let σ C f , let α ∈ Xω, and let m ∈ ω. We have τα C α and τm C m by Proposition 1, so
σ(τα)(τm) C f(α)m, and so qOY f(α)Pm ∈ σ(τα)(τm). Then by definition of application:

∃u ∈ σ(τα), u|ω ∈ τm ∧ u|Y = qOY f(α)Pm

∃v ∈ σ, v|ω→X ∈ τα ∧ v|ω→Y = u

Then since v is a finite word, there is a N such that for each occurence nP in v, we have n ≤ N . Let now
β ∈ Xω such that ∀n ≤ N, βn = αn. Suppose v|ω→X /∈ τβ . Then there is a prefix w of v|ω→X such that
pwq ∈ τα \ τβ . This means that pwq is a play of the form:

ω → X

qOX

qPω

nO

αPn

for some n such that αn 6= βn. But then we have n > N and nP ∈ v, which is impossible. So v|ω→X ∈ τβ
and u ∈ σ(τβ). It follows that σ(τβ)(τm) contains the play:

Y

qOY

f(α)Pm

Therefore we have σ(τβ)(τm) C f(α)m, but because σ C f , τβ C β, and τm C m, we also have
σ(τβ)(τm) C f(β)m, so f(α)m = f(β)m by unicity of the represented object. We finally proved that:

∀α ∈ ω → X,∀m ∈ ω,∃N ∈ ω,∀β ∈ ω → X, (∀n ≤ N, βn = αn)⇒ f(β)m = f(α)m

which means that f is continuous.

3.2 Representation of continuous functions

For the representation of a continuous function f , we define an innocent well bracketed strategy σf which
represents f , so σf must behave well with any representant of a sequence. The first thing we prove is that
the representants of α are in a sense not very far from τα:

Proposition 2. For any C, if ρ C α ∈ Xω, then for all m, there is a n such that ρ contains the play:

n×���� �� ��
ω qPω mO · · · qPω mO

↓
X qOX αPm
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Proof. The strategy τm is in C and we have τm C m by Proposition 1, so:

ρ C α =⇒ ∀m, ρ(τm) C αm
=⇒ ∀m, qOXαPm ∈ ρ(τm)

=⇒ ∀m,∃u ∈ ρ, u|ω ∈ τm ∧ u|X = qOXα
P
m

=⇒ ∀m,∃n, ρ contains:

n×���� �� ��
ω qPω mO · · · qPω mO

↓
X qOX αPm

We now give the definition of the innocent well bracketed σf which will represent f :

Definition 18. If f : (ω → X) → (ω → Y ) is continuous, we define the total innocent well bracketed
strategy σf by its views:
If m ∈ ω and α ∈ Xω, let k be the modulus of continuity of f at α,m:

k = min{i|∀β ∈ Xω, β0 . . . βi = α0 . . . αi ⇒ f(β)m = f(α)m}

which is finite by continuity of f , then σf contains the even-length prefixes of:

(ω → X) → (ω → Y )

qOY

qPω

mO

qPX

αO0

...
qPX

qOω

iP

and

(ω → X) → (ω → Y )

qOY

qPω

mO

qPX

αO0

...
qPX

αOk

f(α)Pm

Finally, we prove by innocence of σf that it indeed represents f :

Theorem 2. If C contains only single threaded strategies, if f : (ω → X) → (ω → Y ) is continuous, then
σf C f .

Proof. Let α ∈ Xω, m ∈ ω, and k the modulus of continuity defined as above. Let τ C m and ρ C α.
From Proposition 2, let n0, . . . , nk be such that ρ contains:

ni×���� �� ��
ω qPω iO · · · qPω iO

↓
X qOX αPi
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ρ is single threaded by hypothesis on C, so we know that it contains:

n0×���� �� �� nk×���� �� ��
ω qPω 0O · · · qPω 0O qPω kO · · · qPω kO

↓ · · ·

X qOX αP0 qOX αPk

We show that σf contains the following play w:

n0×���� �� �� nk×���� �� ��

(

ω qOω 0P · · · qOω 0P qOω kP · · · qOω kP

↓ · · ·
X( qPX αO0 qPX αOk

↓

(

ω qPω mO

↓
Y ( q

O
Y f(α)Pm

Indeed the view of the even-length prefixes of w are all prefixes of:

(ω → X) → (ω → Y )

qOY

qPω

mO

qPX

αO0

...
qPX

qOω

iP

and

(ω → X) → (ω → Y )

qOY

qPω

mO

qPX

αO0

...
qPX

αOk

f(α)Pm

which are, by definition, in σf . Moreover, w|ω→X is the following play:

n0×���� �� �� nk×���� �� ��
ω qPω 0O · · · qPω 0O qPω kO · · · qPω kO

↓ · · ·

X qOX αP0 qOX αPk

which is in ρ, and we have w|ω = qOωm
P ∈ τ since τ C m. Therefore, we have w|Y = qOY f(α)Pm ∈ σf (ρ)(τ),

so σf (ρ)(τ) C f(α)m. Finally, we get that σf C f .
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We now show that the hypothesis on C is necessary for σf to represent f . For this we first give some
pathological non single threaded representants of sequences which only responds to the first answer:

Proposition 3. Let τpatα be the strategy containing the even-length prefixes of the plays:

ω → X

qOX

qPω

nO

αPn

anyO

qPω

...
anyO

qPω

and

ω → X

qOX

qPω

qOX

qPω

anyO

qPω

...
anyO

qPω

then we have:
τpatα C α

if C ∈ {ε;Wb;T ;WbT}.

Proof. It is easy to see that τpatα is total and well bracketed. Let n ∈ ω and τ C n. Then qOω n
P ∈ τ . Since

w =

ω → X

qOX

qPω

nO

αPn

∈ τpatα ∧ w|ω = qOω n
P ∈ τ ∧ w|X = qOXα

P
n

we get that qOXα
P
n ∈ τpatα (τ), so τpatα (τ) C αn, and so τpatα C α.

Now we define a continuous function which, on the input 0ω, needs to know strictly more than one term
in order to determine the ouput:

Proposition 4. The function:

f : {0; 1}ω −→ {0; 1}ω

00α 7−→ 0ω

01α 7−→ 1ω

10α 7−→ 1ω

11α 7−→ 1ω

is continuous, but non representable for C ∈ {ε;W ;T ;WT}.

Proof. f is obviously continuous. Suppose σ is such that σ C f with C ∈ {ε;Wb;T ;WbT}, then for all α
we have:

σ(τpatα )(τ0) C f(α)0
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For α = 0ω, we have f(α)0 = 0, so σ(τpatα )(τ0) C 0, and so qOY 0P ∈ σ(τpatα )(τ0). Then there is a w ∈ σ
such that w|ω ∈ τ0, w|ω→X ∈ τpatα , and w|Y = qOY 0P . We then define a β ∈ {0; 1}ω such that f(β)0 6= f(α)0,
depending on wether σ asks for the first term of α, i.e. wether if

ω → X

qOX

qPω

0O

0P

is a prefix of w|ω→X :

• if so, then β = 01ω (β has the same first term as α),

• if not, then β = 10ω (β has the same other terms as α).

We still have w|ω→X ∈ τpatβ , so:
σ(τpatβ )(τ0) C 0

which is impossible, since f(β)0 = 1, because one strategy cannot represent two different integers.

4 From innocent well bracketed strategies to functions

Here we prove that an innocent well bracketed strategy which is hereditarily total (to be defined) represents
a function in a class of strategies which contains only innocent strategies. The principle is for the candidate
representant σ to:

• make sure that σ gives an answer when playing against τα and τm (this comes from hereditary totality)

• use this answer to define the function

• given τ ′α and τ ′m two other representants of α and m, modify the interaction between σ, τα and τm in
order to obtain the good play in σ(τ ′α)(τ ′m)

For the third point, we describe the interactions of σ with τα and τm we are interested in. We show that
these are of the form qOY vy

P with v generated by the grammar:

Q ::= ε | Q qOX qPω Q iO αPi | Q qPω mO

where in fact the pointers are unnecessary (c.f.: Remark 2). These interaction sequences are then modified
into interaction sequences of σ with τ ′α and τ ′m.

The proof of the fact that the play obtained after the modification indeed corresponds to an interaction
in σ(τ ′α)(τ ′m) uses the innocence of τ ′α, and this is why we need to restrict to classes containing only innocent
strategies.

The hypothesis of well bracketing of σ is necessary, as shown in Proposition 9.

4.1 Heriditarily total strategies

For the first part of the proof, the strategy has to give an answer to any pair of representants of a sequence
and an integer. For that, we would want to restrict ourselves to total strategies, but the composition of
total strategies is not necessarily total: an infinite interaction can appear in the arena B when composing
strategies in the arenas A → B and B → C. In the context of innocent strategies and finite arenas, we
usually restrict to the case of finite strategies, that is, those for which the set of views of the plays it contains
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is finite. In that case, innocent total finite strategies do compose. However, since our sets can be infinite,
the notion of finiteness of strategies doesn’t give sense anymore, but total strategies still do not compose, so
we define the class of hereditarily total strategies, which is stable by application.

Definition 19 (Hereditarily total strategies). We define the set HTC(A) of hereditarily total strategies for
class C on arena A inductively built according to Definition 3 as follows:

• If A is a flat arena, a strategy on this arena is in HTC(A) if it is total and in C.

• A strategy σ is in HTC(A→ B) if for any strategy τ in HTC(A), σ(τ) is in HTC(B).

The canonical representants τα and τm are indeed hereditarily total:

Proposition 5. For any C, τm ∈ HTC(ω) and τα ∈ HTC(ω → X).

From that we will be able to define the represented function.

4.2 Representants of integers

The following result is useful in the third part of the proof. Indeed, instead of taking an arbitrary τm, since
we are in a context of single threaded strategies, we can directly use τm:

Proposition 6. If τ is a single threaded total strategy on ω, then there is a unique m ∈ ω such that τ = τm.

Proof. Indeed, since qOω is a legal play and τ is total, then there exists a unique m such that qOωm
P ∈ τ .

Then, since τ is single threaded, we get that τ = (qOωm
P )∗ = τm.

4.3 Describing the plays of τα

In the second part of the proof, we need to describe an interaction between σ, τα, and τm. For that, we first
give a description of the well bracketed plays of τα:

Proposition 7. If α ∈ Xω, the set of well bracketed plays of τα are the even-length prefixes of the words of
the language LP generated by the grammar:

P ::= ε | P qOX qPω P iO αPi

Proof. We have ε ∈ τα, and if u1, u2 ∈ LP, then:

pu1q
O
Xq

P
ω u2i

OαPi q = qOXq
P
ω i
OαPi ∈ τα

For the converse implication we first show that if u ∈ τα has no pending question, then u ∈ LP, by induction
on the size of u:

• u = ε: it is immediate

• |u| > 0: u ∈ τα, so |u| is even, and u has no pending question, so u ends with an answer of player,
which is necessarily some αPi by definition of τα. Again by definition of τα, the preceding move is iO,
which is the answer of a qPω appearing before. But the only possible move before this qPω is qOX , by
definition of τα. Thus u can be written as:

u = u0 qOX qPω u1 iO αPi

By well bracketing, we know that this αPi is the answer to this qOX . By closure of τα under even-length
prefixes, we know that u0 ∈ τα. Moreover, since u has no pending question and this αPi is the answer
to this qOX , we know that u0 has no pending question, so by induction hypothesis, u0 ∈ LP. u1 has no
pointer to u0q

O
Xq

P
ω : indeed, an answer in u1 points to the last pending question, but u0 has no pending

13



question and qOX and qPω are answered after u1, and by definition of τα, each qPω points to the preceding
move, which is a qOX . Therefore we have:

pu0q
O
Xq

P
ω u1q = pu1q

but u0q
O
Xq

P
ω u1 ∈ τα, so pu1q ∈ τα, and so u1 ∈ τα. Now, since the last pending question of u0q

O
Xq

P
ω u1

is qPω , we know that u1 has no pending question, and so by induction hypothesis, u1 ∈ LP. Finally we
can conclude that

u = u0 qOX qPω u1 iO αPi ∈ LP

Now we show that each u ∈ τα can be extended to a uv ∈ τα which has no pending question, by induction
on the number of pending questions of u:

• u has no pending question: it is immediate

• u has at least one pending question: observe that the last pending question of u is a qPω : indeed, each
qOX is immediately followed by a qPω , and each answer to a qPω by O is immediately followed by an
answer to the corresponding qOX by P . Since each qPω is immediately preceded by the corresponding
qOX , we can write:

u = u0q
O
Xq

P
ω u1

where this qPω is the last pending question. But then u0q
O
Xq

P
ω u10OαP0 ∈ τα has strictly less pending

questions than u, so we can conclude by induction hypothesis.

We deduce from the two preceding facts that each play of τα is an even-length prefix of a word of LP.

Now we can apply it to the description of the interactions between σ, τα and τm:

Proposition 8. Let m ∈ ω, α ∈ Xω, and let u = qOY vy
P for some y ∈ Y be a well bracketed play on the

arena (ω → X) → (ω → Y ) which satisfies u|ω→X ∈ τα, u|ω ∈ τm and u|Y = qOY y
P . Then v is in the

language LQ generated by the following grammar:

Q ::= ε | Q qOX qPω Q iO αPi | Q qPω mO

Proof. Since u is well bracketed and since the first move qOY is answered by the last move yP , we get that
u|ω→X ∈ τα is well bracketed and has no pending question. Therefore it is in LP. Since in the play P is the
only one allowed to change between ω → X and ω (in order to respect alternance), and since τm = (qOωm

P )∗,
the result follows.

Remark 2. The plays which are considered in Proposition 8 are well bracketed and obtained by an interaction
between innocent strategies, so we are in a particular case of [AM96], and according to [GM00] the pointers
can be erased without loss of information.

4.4 A counter-example

We saw in the above section that well bracketing is a useful tool to dissect strategies. The fact is that it is
necessary to our result:
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Proposition 9. Let C be the class of innocent or innocent and total strategies. Let σ be a strategy in C and
HTC((ω → X)→ (ω → Y )) containing the following plays:

(ω → X) → (ω → Y )

qOY

qPX

xO

0O

(ω → X) → (ω → Y )

qOY

qPX

qOω

1O

Then there is no f : Xω → Y ω such that σ C f .

Proof. Let τ be the single-threaded strategy on ω → X containing the play:

ω → X

qOX

0P

Whe have:
τ C 0ω ∧ σ(τ)(τ0) C 0 ∧ σ(τ0ω )(τ0) C 1

4.5 Transforming the interaction

We use the grammar above in order to define inductively, given a τ which represents α, a transformation
from the interactions of σ with τα and τm to its interactions with τ and τm:

Definition 20. Let C be any class, let α ∈ Xω and τ C α. We proved in Proposition 2 that there exists a
sequence of integers (ni)i∈N such that for all i, τ contains:

ni×���� �� ��
ω qPω iO · · · qPω iO

↓
X qOX αPi

For u = qOY vy
P with y ∈ Y a well bracketed play in the arena (ω → X) → (ω → Y ) such that u|ω→X ∈ τα,

u|ω ∈ τm and u|Y = qOY y
P , we define by induction ϕτ (v) by:

ϕτ (ε) = ε

ϕτ (v0qPωm
O) = ϕτ (v0)qPωm

O

ϕτ (v0qPXq
O
ω v1i

PαOi ) = ϕτ (v0)qPX(qOω ϕτ (v1)iP )niαOi

The following result proves that if τ is innocent, then by applying the above transformation we obtain
an interaction with τ :

Proposition 10. Let u = qOY vy
P for some y ∈ Y be a well bracketed play in the arena (ω → X)→ (ω → Y )

such that u|ω→X ∈ τα, u|ω ∈ τm and u|Y = qOY y
P . For any C, if α ∈ Xω and τ C α is innocent, then

u′ = qOY ϕτ (v)yP is such that u′|ω→X ∈ τ , u′|ω ∈ τm and u′|Y = qOY y
P .
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Proof. First by definition of u′ and ϕτ , we have u′|ω ∈ τm and u′|Y = qOY y
P . It is also straightforward to

verify that ϕτ (v)|ω→X = ϕτ (v|ω→X). Then we only need to prove that if v ∈ τα, then ϕτ (v) ∈ τ . We prove
this by induction on the derivation of v:

• v = ε: ϕτ (v) = ε ∈ τ

• v = v0q
O
Xq

P
ω v1i

OαPi : we prove that every even-length prefix w of ϕτ (v) is such that pwq ∈ τ :

– if w is a prefix of ϕτ (v0), since by induction hypothesis ϕτ (v0) ∈ τ we get w ∈ τ
– if w = ϕτ (v0)qOX(qPω ϕτ (v1)iO)kqPω , then pwq = qOX(qPω i

O)kqPω ∈ τ
– if w = ϕτ (v0)qOX(qPω ϕτ (v1)iO)kqPωw

′ for some non empty prefix w′ of ϕτ (v1), then since no move
in w′ point to a move in ϕτ (v0)qOX(qPω ϕτ (v1)iO)kqPω we get pwq = pw′q, so w ∈ τ because w′

is an even-length prefix of ϕτ (v1) which is in τ by induction hypothesis, and finally pϕτ (v)q =
qOX(qPω i

O)niαPi ∈ τ .

4.6 The theorem

We now have all the necessary material to prove the last theorem:

Theorem 3. Let C be a class which contains only innocent strategies. If σ is in C and if it is well bracketed
and hereditarily total on Xω → Y ω, then there exists f : Xω → Y ω such that σ C f .

Proof. Let first define f . If α ∈ Xω and m ∈ ω, then σ(τα)(τm) is in HTC(Y ) by Proposition 5, so it is total,
so there is a unique y ∈ Y such that qOY y

P ∈ σ(τα)(τm), so σ(τα)(τm) C y. Let then define f(α)m = y.
Now, since the only single threaded representant of m ∈ ω is τm by Proposition 6, we must show:

∀α,∀τ C α,∀m,σ(τ)(τm) C f(α)m

Let α ∈ Xω and m ∈ ω. We have qOY f(α)Pm ∈ σ(τα)(τm) so:

∃u = qOY vf(α)m ∈ σ, u|ω→X ∈ τα ∧ u|ω ∈ τm ∧ u|Y = qOY f(α)Pm

Now, let τ C α. We have that u′ = qOY ϕτ (v)f(α)Pm is such that u′|ω→X ∈ τ , u′|ω ∈ τm and u′|Y = qOY f(α)Pm by
Proposition 10, so we only have to show that u′ ∈ σ in order to prove that σ C f . Let define σ̃ as the set of
legal plays which have all their even-length prefixes in σ. In other words it is the set of plays of σ plus the set
of plays of σ followed by a legal O-move. We first prove that if w1 ∈ LQ, then pqOY w0ϕτ (w1)q = pqOY w0w1q
by induction on the production of w1:

• w1 = ε: pqOY w0q = pqOY w0q

• w1 = v0q
P
ωm

O:

pqOY w0ϕτ (v0)qPωm
Oq = pqOY w0ϕτ (v0)qqPωm

O

= pqOY w0v0qq
P
ωm

O

= pqOY w0v0q
P
ωm

Oq

• w1 = v0q
P
Xq

O
ω v1i

PαOi :

pqOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )niαOi q = pqOY w0ϕτ (v0)qqPXα
O
i

= pqOY w0v0qq
P
Xα

O
i

= pqOY w0v0q
P
Xq

O
ω v1i

PαOi q
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Now, we prove the property:

P (w1) := ∀w0, (qOY w0w1 ∈ σ̃ ∧ w1 ∈ LQ) ⇒ qOY w0ϕτ (w1) ∈ σ̃

We reason by induction on the production of w1 by Q:

• w1 = ε: if qOY w0 ∈ σ̃, then qOY w0 ∈ σ̃

• w1 = v0q
P
ωm

O: we have qOY w0v0q
P
ω ∈ σ and pqOY w0ϕτ (v0)q = pqOY w0v0q, so by innocence of σ,

qOY w0ϕτ (v0)qPω ∈ σ, and so qOY w0ϕτ (v0)qPωm
O ∈ σ̃

• w1 = v0q
P
Xq

O
ω v1i

PαOi :
qOY w0ϕτ (w1) = qOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )niαOi

qOY w0v0 is in σ̃ as a prefix of qOY w0w1 ∈ σ̃, so by induction hypothesis, qOY w0ϕτ (v0) ∈ σ̃. Then
pqOY w0ϕτ (v0)q = pqOY w0v0q and qOY w0v0q

P
X ∈ σ, so qOY w0ϕτ (v0)qPX ∈ σ. Let show by induction on

0 ≤ k ≤ ni that:
qOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )k ∈ σ

For k = 0, we just proved it. Let now suppose this holds for some k < ni. For any v′1 prefix of v1, we
have:

pqOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )kqOω v
′
1q = pqOY w0ϕτ (v0)qqPXq

O
ω v
′
1

= pqOY w0v0qq
P
Xq

O
ω v
′
1

= pqOY w0v0q
P
Xq

O
ω v
′
1q

because the O-moves of v′1 point in v′1, so by innocence of σ and by induction on |v′1|, we have

qOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )kqOω v
′
1 ∈ σ̃

Then we have
qOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )kqOω v1 ∈ σ̃

and by induction hypothesis:

qOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )kqOω ϕτ (v1) ∈ σ̃

But:
pqOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )kqOω ϕτ (v1)q = pqOY w0v0q

P
Xq

O
ω v1q

and qOY w0v0q
P
Xq

O
ω v1i

P ∈ σ, so qOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )k+1 ∈ σ by innocence of σ. Finally we get:
qOY w0ϕτ (v0)qPX(qOω ϕτ (v1)iP )niαOi ∈ σ̃

We can now prove that u′ ∈ σ. Indeed, by applying the preceding property with w0 = ε and w1 = v, since
qOY v ∈ σ̃, we get qOY ϕτ (v) ∈ σ̃. Moreover, since pqOY ϕτ (v)q = pqOY vq and u = qOY vf(α)m ∈ σ, we conclude by
innocence of σ that u′ ∈ σ, which achieves the proof.

5 Conclusion

In this work, we defined a notion of representation of functions on infinite sequences by strategies of Hylan-
Ong games. We then proved that in the context of single threaded strategies, the continuous functions
are exactly those which are representable. Finally we obtained a result of completeness which says that
innocent well bracketed hereditarily total strategies represent continuous functions. As expected, our notion
of representation works better with innocent strategies. However, Theorem 2 shows that continuous functions
are representable w.r.t. not necesserarily innocent strategies.

The next step of this work is to investigate the notion of hereditary totality more closely.
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Further work could be to investigate realizability models directly based on games semantics, and maybe
obtain models of realizability by programs with refences. Realizability is a technique to extract a program
from a formal proof of a given formula. If the formula is of the form ∀x∃yA[x, y], then the extracted
program should represent a function which, given x, provides y such that A[x, y] is true. In the framework
of functions from infinite sequences to infinite sequences, the programs extracted from intuitionistic proofs
compute continuous functions, but in a classical setting, some non continuous functions can be obtained.
However some of them belong to particular classes of functions (between continuous and borel) which can
be modelized by variations on Wadge games (see [Sem09]). This work shows that the representation of
sequences by arrow usual arenas is not suitable for an adaptation of the techniques described in [Sem09].
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