
Basics for algebraic numbers and a proof of

Liouville’s theorem in C-CoRN

Valentin Blot

July 18, 2009

Abstract

This report is that of the training period that ended my first year of
Master at the Ecole Normale Supérieure de Lyon. This training period
took place at the Radboud Universiteit Nijmegen (Netherlands), and was
supervised by Freek Wiedijk. The subject studied is the formalization
of algebraic numbers in Coq. In a first part we will show how we for-
malized Euclidean polynomial division and Cayley-Hamilton theorem (by
using SSReflect), which are key lemmas for the first results on algebraic
numbers, and in a second part we will present a constructive proof of Li-
ouville’s theorem, which states that if a is an algebraic irrational number,
there exists C ∈ R and n ∈ N such that :

∀p

q
∈ Q,

˛̨̨̨
a− p

q

˛̨̨̨
>

C

qn

1 Introduction

The formalization of algebraic numbers is a challenging task, since it involves
the manipulation of multiple algebraic structures. For example, if A is a subring
of B and if α ∈ B, then A[α] is a ring between A and B. This manipulation
of multiple algebraic structures in Coq must be done very carefully, and the
best way to manage it, as explained at the end of the first part, is to use the
analogy between type theory and category theory. The training period was too
short to build an entire library of algebraic numbers in Coq, so we formalized
two fundamental theorems useful for basic results on algebraic numbers, and
explained the analogy between type theory and category theory that should be
used for a future formalization. The two theorems are the following :

� Euclidean polynomial division on a ring : if f, g are polynomials, if g
is monic (its highest coefficient is 1), then there exists a unique pair of

polynomials (q, r) such that

{
f = q ∗ g + r

dr < dg

� Cayley-Hamilton theorem : if A is a matrix over a ring, if χA(X) =
det(A−XIn) is its characteristic polynomial, then χA(A) = 0

1



In a second part, we describe a certified algorithm which, from a rational
polynomial P , builds a polynomial which roots are exactly the irrational roots
of P . More precisely, if

p1

q1
, . . . ,

pm
qm

are the rational roots of P (with multiplicity), then we build the polynomial :

P∏m
i=1

(
X − pi

qi

)
The hard task in such an algorithm is to find the rational roots, and to find
every rational root. In order to achieve this, we use decidability of equality on
Q and arithmetic properties of Z. Once we have this algorithm, the proof of
Liouville’s theorem is quite straight-forward.

2 Combining SSReflect, C-CoRN and Type Classes

2.1 What are SSReflect, C-Corn and Type Classes

2.1.1 C-CoRN

C-CoRN (constructive Coq repository at Nijmegen) is a big constructive library
of mathematics (see [5], [6], [3] and [4]), which was born with the project of
a constructive formalization of the fundamental theorem of algebra. C-CoRN
constitutes the main environment in which I worked, and in which my work (has
been/will be) integrated. The main parts I used in C-CoRN were :

� The CRing structure of commutative rings

� The cpoly structure of polynomials (encoded as an inductive type : 0 is a
polynomial and if P is a polynomial, c+X*P is a polynomial)

� The formalization of the ring homorphisms theorem

The first lemma we needed to prove was the euclidean division of polynomials,
in order to prove that for every α algebraic on R, R[α] is finitely generated as
an R-module. Here is the statement of that lemma :
Variable CR:CRing
Lemma cpoly div:
forall (f g:cpoly cring CR) (n:nat), monic n g ->
ex unq (fun (qr:ProdCSetoid (cpoly cring CR) (cpoly cring CR))=>
f[=](fst qr)[*]g[+](snd qr) and degree lt pair (snd qr) g).

Where monic n g means that g is of degree n and g’s nth coefficient is 1, and
degree lt pair r g means that for every n, if g is of degree less than (n+1),
then r is of degree less than n, and if g is of degree 0, then r = 0.

2



2.1.2 SSReflect

SSReflect is an extension to the Coq toplevel, providing new tactics, adapted
for small scale reflection. This extension was written by Georges Gonthier in
order to formalize the 4-colour theorem (see [7]), and then updated by Georges
Gonthier and Assia Mahboubi in [8], in order to build an entire group theory
library on it in [9], called math components.

SSReflect only talks about decidable, by the use of the “reflect” inductive
type :
Inductive reflect (P:Prop) : bool -> Prop :=

| ReflectT : P -> reflect P true
| ReflectF : ~P -> reflect P false.

After that, we only work with elements of the type eqType which are types T
for which we have a binary function eqb : T -> T -> bool together with a
proof of :
forall x y : T, reflect (x = y) (eqb x y).
which means that the Leibniz equality is decidable (reflected by the boolean
function eqb). We can remark that for example the set of real numbers cannot
be implemented as an eqType, since we cannot decide equality of arbitrary real
numbers (however, apartness is semi-decidable).

The main reason why I needed to use SSReflect is that the Cayley-Hamilton
theorem (which is useful to prove that if a is algebraic then R[a] is an algebraic
extension) had recently been formalized in math components in [2], and so I
planned to use their results in my formalization of algebraic numbers. However,
the approaches of C-CoRN and SSReflect are very different, since C-CoRN is
entirely constructive, and SSReflect only talks about decidable. Therefore I
couldn’t use the SSReflect version of Cayley-Hamilton as-is in C-CoRN. More
details are given in section 2.2.

2.1.3 Type classes

Type classes are part of Coq standard library. Type classes were proposed by
Matthieu Sozeau in [10], and his work has recently been integrated into Coq
8.2. The Coq type classes are inspired by Haskell’s type classes and use the
databases of the auto tactic and implicit arguments in their implementation in
Coq. Type classes are mainly an improvement of structures which uses existing
features of Coq to emulate Haskell’s type classes, and indeed nothing had to be
added to the Coq kernel for the implementation. Here is the basic use of type
classes :
First, one declares a class example with parameters T, param, ... and members
member1, ..., just as a regular structure :
Class example (T:Type) (param:T)...:={ member1:...; ...}.
Then one can declare “instances” of the class example by giving the parameters,
and then eventually using tactics to build the members (usefull when members
are properties on parameters for example) :
Instance example inst:example T p. Proof. ... Qed.

3



This is the first improvement : the definition of an instance can be done using
tactics.

A fundamental class is the class of equivalence relations :
Class Equivalence {A:Type} (R:relation A):Prop:=

{Equivalence Reflexive:Reflexive R;
Equivalence Symmetric:Symmetric R;
Equivalence Transitive:Transitive R}.

where Reflexive, Symmetric and Transitive are themselves type classes with
one member, for example, Reflexive is defined as :
Class Reflexive {A:Type} (R:relation A):Prop:=

{reflexivity:forall x, R x x}.
Another improvement is the command Context. If one wants to prove lem-

mas on a structure which has an equivalence relation, the common beginning of
the section will look like this :
Variable R:Type.
Variable req:relation R.
Variable r st:Equivalence req.
But type classes introduce a new command, Context, which makes heavy use of
implicit arguments, and which allows the three lines above to be written equiv-
alently as :
Context ‘{r st:Equivalence R req}. (Note the ‘ after “Context”).

Here is a very simple example of the use of type classes :
Context ‘{r st:Equivalence R req}.
Class associative (op:binop R):=

assoc:forall x y z,op x (op y z) === op (op x y) z.
Instance addn assoc:associative addn. Proof. ... Qed.
Goal forall x y z:nat, (x + y) + z = x + (y + z)
Proof. intros x y z;rewrite assoc;reflexivity. Qed.
We see that we can use the assoc member of the class associative for rewrit-
ting without the need for additional parameters. Coq will find the necessary
instance addn assoc automatically using a database of instances with the auto
tactic.

Let see now a less trivial example :
We first declare three classes for binary operations :
Class commutative (op:binop R):=

commut:forall x y, op x y === op y x.
Class left unit (op:binop R) (idm:R):=

left id:forall x, op idm x === x.
Class right unit (op:binop R) (idm:R):=

right id:forall x, op x idm === x.
Then we suppose we have a setoid equivalence and a commutative operation
on it (we can note that Coq infers automatically the parameters R and req of
commutative:
Context ‘{r st:Equivalence R req}.
Context {mul:binop R} {mulC:commutative mul}.
Then, for any idm:R we build an instance of right id mul idm from an

4



instance of left id mul idm :
Instance mulC id l {idm:R} {H:left unit mul idm}:right unit mul idm.
Proof. ... Qed.
Let now suppose we have built instances of commutative and left id for the
addition on nat :
Instance addnC:commutative addn. Proof. ... Qed.
Instance addnLU:left unit addn 0. Proof. ... Qed.
Then :
Goal forall x:nat, x + 0 = x.
Proof. rewrite right id; reflexivity. Qed.
Coq automatically finds the instance of right unit addn 0 with the instances
mulC id l, addnC and addnLU.

2.2 The combination

The idea of using SSReflect came when we realized that the Cayley-Hamilton
theorem was useful to show that for any α algebraic on R, R[α] is an algebraic
extension of R. For a matrix A ∈Mn(R), we define its characteristic polynomial
as :

χA(X) = det(A−XIn)

The Cayley-Hamilton theorem says :

∀A ∈Mn, χA(A) = 0

Therefore, in order to prove this theorem, we need to formalize the determinant
of a matrix :

det(A) =
∑
s∈Sn

ε(s)
n∏
i=1

Ai,s(i)

We need to formalize a sum on every permutation and the signature of a permu-
tation. We will also need for the Cayley-Hamilton theorem to perform variable
changes on this sum, and therefore we need to formalize the fact that the sig-
nature is a group homomorphism. All this is quite a big work and it would
have been impossible to do it within the training period. The only solution was
to find a way to use SSReflect’s results, but in C-CoRN, with a general setoid
equivalence, and with no need for decidability on it. The idea is to use the
results of SSReflect for the set of indices of the sums, products, and matrices,
because these sets are finite, and therefore decidable, while using a general se-
toid equivalence for the coefficients. This leaded to a rewriting of two libraries
of SSReflect : the bigops library, which formalizes the use of big operations
like

∑
,
∏
,
⋃
,
⋂

, and the matrix library, which formalizes cut-paste operations,
addition, multiplication on matrices and determinant.

2.2.1 The SSReflect version

The SSReflect version of bigops was made in a way that allows its use within
general types (see [1]), not necessarily decidable, but unfortunately, the prop-

5



erties of operations like associativity, commutativity or distributivity that are
needed to use the lemmas of the library must be proven for the Leibniz equality,
and not a general setoid equivalence. The purpose of the rewritting is therefore
to be able to use it with a general equivalence.

The SSReflect version of the bigops library uses canonical structures. For
example the following structure is defined :
Structure law:Type:=Law{

operator:>T -> T -> T;
:associative operator;
:left id idm operator;
:right id idm operator}.

With for example associative defined as :
Definition associative op:=forall x y, op x y = op y x
(note the use of Leibniz equality).
Then, if one wants to use the lemmas of the library that use associativity and
identity element, one first has to define an element of the structure law, and
then declare it as a canonical structure.
For example, with the addition on nat :
Definition addn law :=

Law (T:=nat) addn assoc addn lid addn rid.
Canonical Structure addn law.

Concerning the matrix library, the set of coefficients in the SSReflect version
live in a type of type ringType, which is the decidable type for rings in SSReflect.
Therefore we needed to rewrite it in the case of rings with a general setoid
equivalence.

2.2.2 The rewritten version

The rewriten version replaces the canonical structures which represent the prop-
erties of operators with Leibniz equality with type classes which represent the
properties of operators with a general setoid equivalence. We define classes of
operations as in 2.1.3, so if one has to use the lemmas of the rewritten library,
one only has to declare the appropriate instances for the operator. For example,
if we have the following in the library :
Context ‘{Equivalence R req} {op:binop R} {idm:R}.
Context {op morph:Morphism(equiv==>equiv==>equiv)op}.
Context {op assoc:associative op}.
Context {op left id:left unit op idm}.
Context {op right id:right unit op idm}.
Lemma bla bla:bla bla bla. Proof. ... Qed.
Then one only has to declare the appropriate instances (Equivalence, Morphism,
associative, left id and right id) to be able to use the lemma bla bla with-
out any argument. And for example if there exists an instance of commutative
for the law, then one doesn’t have to declare the instance of right id, since it
will be automatically found by using mulC id l, as explained in 2.1.3.

Concerning the matrix library, we defined a class Ring which takes an equiv-

6



alence as parameter and which two members are elements of the structures
ring theory and ring eq ext of the standard Coq ring library. This use of the
structures of standard rings allows the use of the ring tactic with the instances
of the class Ring. Therefore, the lemmas in the rewritten version of the matrix
library are written in the following context :
Context ‘{r st:Equivalence R req}.
Context ‘{r ring:Ring}.
We then use the rewritten version of the bigops library to define the determinant
and prove its properties.
The determinant is defined as follows :
Definition determinant n (A:’M n) :=

\sum (s:’S n) (-1)^+s*\prod (i:’I n) A i (s i).
thanks to the coercion ’S n>->bool>->nat of SSReflect. In this definition we
use the rewritten version of the bigops library for which indices live in SSReflect’s
finType, therefore we can use all the theoretical results about permutations that
exist in SSReflect.

The main lemma for the Cayley-Hamilton proof is the following :
Lemma mulmx adjr : forall n (A:’M n),

A *m adjugate A === scalar mx (\det A).
where adjugate is the transposed matrix of cofactors of A, and scalar mx a is
the matrix a× In.

2.2.3 Cayley-Hamilton in C-CoRN

Using the rewritten library, and the fact that every CRing (the rings of C-CoRN)
is a Ring (the class defined above), we are now able to prove the following the-
orem :
Lemma Cayley Hamilton:

forall (A:M(CR)) (a:CR) (X:matrix CR n 1),
A *m X === (scalar mx a) *m X ->

(scalar mx (char poly ! a)) *m X === ’0m.
Indeed, this is not exactly the Cayley-Hamilton theorem stated above, but the
general version would require the evaluation of a polynomial on a matrix, which
is not possible in C-CoRN, since the polynomials are defined on CRing struc-
ture, which is commutative, and the matrices do not form a commutative ring.
The exact version of Cayley-Hamilton would therefore require a new structure
for non-commutative rings in C-CoRN, which would have required too much
time. But this version is almost equivalent, and the standard version of Cayley-
Hamilton would be easily proved from this lemma if we had the appropriate
structures.

2.3 Algebraic numbers

We give here the mainlines for a future formalization of algebraic numbers in
Coq, since the training period was too short to write an entire library on alge-
braic numbers. We present the first implementation (using subsets) in which we

7



got lost, and then we present a more category-related implementation, which
we unfortunately did not implement, because of the lack of time.

2.3.1 The bad way of seeing R[α]

The first idea in order to formalize ring/field extensions is to consider a ring B
and a predicate P on B which preserves operations, so the set :

A = {x : B|Px}

is a subring of B. Then for any α : B, we can define the predicate P ′ on B :

∀x : B,P ′x⇔ ∃p ∈ A[X], p(α) = x

and then we have
A[α] = {x : B|P ′x}

but we also need to see A as a subring of A[α], so we need a predicate P ′′ on
A[α] defined as :

∀x : A[α], P ′′x⇔ P (x : B)

so we have two representations for A :

{x : B|Px} and {x : A[α]|P ′′x}

so it becomes messy, and even more when considering A[α][β]. In order to have a
clean formalization, we need to have a categorical vision of ring/field extensions.

2.3.2 The good way of seeing R[α]

Instead of using predicates and subring, we generalize this notion by considering
two rings A and B, together with a ring homomorphism φ : A→ B. Therefore,
φ(A) can be seen as a subring of B.
We also have the following ring homomorphisms :

� the canonical injection C : A→ A[X]

� φp : A[X]→ B[X] which applies φ to each coefficient of a polynomial

� !α : B[X]→ B which applies a polynomial in α

So !α ◦ φp : A[X] → B is a ring homomorphism, and we can build A[α] as the
quotient of the ring A[X] by the kernel of !α ◦ φp and the ring homomorphism
theorem gives us two ring homomorphisms :

� τ : A[X]→ A[α] surjective

� σ : A[α]→ B injective

8



This is summarized in the following commutative diagram :
A[X] τ //

φp

##GGGGGGGG
A[α]

σ

��

B[X]
!α

##GG
GG

GG
GG

G

A

C

OO

φ // B
After that, it is quite straightforward to define multiple extensions :

A
C //

@A
φ //

A[X]

φp

��

τα // A[α] C //

@A
σα

))TTTTTTTTTTTTTTTTTTTTTT

A[α][Y ]

(σα)p

��

τβ // A[α][β]

σβ

��

B[X] !α

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX B[Y ]
!β

%%KKKKKKKKKK

B

3 Effective constructive proof of Liouville’s the-
orem

3.1 Liouville’s theorem

Let a be an algebraic non-rational number, then there exists C ∈ R and n ∈ N
such that :

∀p ∈ Z,∀q ∈ N∗,
∣∣∣∣a− p

q

∣∣∣∣ > C

qn

Proof :
Let Pa be the minimal polynomial of a, let n = degPa, then ∀p, q, Pa

(
p
q

)
6= 0

(otherwise Pa
X− pq

is a nonzero polynomial satisfying a, and of degree < n).

⇒
∣∣∣∣qn(Pa(a)− Pa

(
p

q

))∣∣∣∣ =
∣∣∣∣qnPa(pq

)∣∣∣∣ ∈ N∗


∣∣∣a− p

q

∣∣∣ ≤ 1⇒ q−n ≤
∣∣∣Pa(a)− Pa

(
p
q

)∣∣∣ ≤ sup[a−1;a+1] |P ′a|
∣∣∣a− p

q

∣∣∣∣∣∣a− p
q

∣∣∣ ≥ 1⇒
∣∣∣a− p

q

∣∣∣ ≥ 1
qn

Let C = min

(
1,

1
sup[a−1;a+1] |P ′a|

)

Then ∀p
q
∈ Q,

∣∣∣∣a− p

q

∣∣∣∣ ≥ C

qn

9



The issue in this proof is that in general, the existence of a minimal polynomial
is non-constructive. But we can go through this when considering numbers
that are algebraic on Q, because of the decidability of Q , and thanks to the
arithmetic properties of Z. In fact we do not exactly need the notion of a
minimal polynomial of an algebraic number, we can use a weaker result :

∀a non-rational, ∀P ∈ Q[X],

P (a) = 0⇒ ∃Q ∈ Q[X],

{
Q(a) = 0
∀x ∈ Q, Q(x) 6= 0

Since Rolle’s theorem has already been formalized in C-CoRN, the major part
is to build a certified algorithm which builds Q from P .

3.2 Introduction to the algorithm

Let us suppose P ∈ Z[X], and p
q ∈ Q such that P

(
p
q

)
= 0

Then : 0 = qnP

(
p

q

)
=

n∑
i=0

Pip
iqn−i ∈ Z

� P0q
n = −

∑n
i=1 Pip

iqn−i = −p
∑n
i=1 Pip

i−1qn−i

so p|P0q
n, and since we can consider p ∧ q = 1, we have p|P0

� Pnp
n = −

∑n−1
i=0 Pip

iqn−i = −q
∑n−1
i=0 Pip

iqn−i−1

so q|Pnpn, and since we can consider p ∧ q = 1, we have q|Pn

⇒ there is a finite amount of possible rational roots !
The principle of the algorithm is the following :

For any P ∈ Q[X],
either

∀p
q
∈ Q, P

(
p

q

)
6= 0

in which case the algorithm is over, or

∃p
q
∈ Q, P

(
p

q

)
= 0

in which case we iterate the algorithm on

P

X − p
q

which is of degree less than P .

10



3.3 canonical rationals

The sentence “we can consider p ∧ q = 1” implies the need for a formalization
of Q’s canonical representation :
Definition Q can num(q:Q as CRing):Z as CRing:=

(Qnum q)/(Zgcd(Qnum q)(Qden q)).
Definition Q can den(q:Q as CRing):Z as CRing:=

(Qden q)/(Zgcd(Qnum q)(Qden q)).
Definition Q can(q:Q as CRing):=

(Q can num q)#(Q can den pos val q).
Lemma Q can spec:forall q:Q as CRing,

q[=]Q can q.
Lemma Q can spec2:forall q:Q as CRing,

Zrelprime(Qnum (Q can q))(Qden (Q can q)).

3.4 from Q[X]to Z[X]

We build a polynomial in Z[X] from a polynomial in Q[X] by multiplying each
coefficient by the lcm of the denominators of the coefficients

We first define the lcm and generalized lcm over a list :
Definition Zlcm(a b:Z as CRing):Z as CRing:=

(a[*]b)/(Zgcd a b).
Fixpoint Zlcm gen(l:list Z as CRing):Z as CRing
Lemma Zlcm gen spec:forall l x,

In x l -> Zdivides x (Zlcm gen l).
Lemma Zlcm gen spec2:forall l x,

(forall y, In y l -> Zdivides y x)
-> Zdivides (Zlcm gen l) x.

We then build the list of canonical denominators of Q[X] polynomials and
the lcm over it :
Fixpoint den list(P:QX):list Z as CRing
Definition Zlcm den poly(P:QX):=Zlcm gen(den list P).
We define the polynomial of Z[X] obtained by taking the canonical numerators
of the coefficients :
Fixpoint Q can num poly (P:QX):ZX
qx2zx takes a polynomial of Q[X], multiplies every coefficient by the lcm of
the canonical denominators, and then takes the polynomial of the canonical
numerators, which is in Z[X] :
Definition qx2zx(P:QX):ZX:=

Q can num poly( C Zlcm den poly P [*] P).
zx2qx is the canonical injection from Z[X] to Q[X] :
Definition zx2qx:=cpoly map injZ rh.
The predicate in ZX is true if each of the coefficients of the polynomial has a
canonical denominator equal to 1.
Lemma zx2qx spec:forall P:QX,

in ZX P -> P [=] zx2qx (Q can num poly P).

11



We can prove that a polynomial of Q[X] multiplied by the lcm of the canonical
denominators of its coefficients is indeed in Z[X] :
Lemma Zlcm den poly spec:

forall P, in ZX ( C Zlcm den poly P [*] P).
And finally the following lemma :
Lemma qx2zx spec:forall P,

zx2qx (qx2zx P) [=] C Zlcm den poly P [*] P.

3.5 qˆn P(p/q) is in Z

We also need the following fact for polynomials in Z[X] :

qnP

(
p

q

)
=

n∑
i=0

Pip
iqn−i ∈ Z

Lemma Q Z poly apply:forall (P:ZX) (p:Z as CRing) (q:positive),
let n:=ZX deg P in

(injZ rh q)[^]n [*] (zx2qx P) ! (p # q)
[=]injZ rh (Sum 0 n (fun i => (nth coeff i P)[*]p[^]i[*]q[^](n-i))).

We now define the coefficient of highest degree of qx2zx P for P ∈ Q[X] :
Let Pn(P:QX):=nth coeff (QX deg P) (qx2zx P).
And we prove that the canonical denominator of any rational root of P divides
this coefficient :
Lemma den div Pn:forall (P:QX) (a:Q as CRing),

P!a[=]Zero -> Zdivides(Q can den a)(Pn P).
We also define the coefficient of lowest degree :
Let P0(P:QX):=nth coeff 0 (qx2zx P).
And prove that the canonical numerator of any rational root of P divides this
coefficient :
Lemma den div P0:forall (P:QX) (a:Q as CRing),

P!a[=]Zero -> Zdivides(Q can num a)(P0 P).

3.6 The roots are localized

(list Q a b) is the list of all rational numbers p
q such that

{
|p| ≤ |a|
|q| ≤ |b|

:

Definition list Q (a b:Z as CRing):list Q as CRing

In particular, (list Q a b) contains all rational numbers p
q such that

{
p|a
q|b

:
Lemma list Q spec:forall (a b:Z as CRing) q,

a [#] Zero -> b [#] Zero ->
Zdivides (Q can num q) a ->
Zdivides (Q can den q) b ->

In (Q can q) (list Q a b).
We prove that if the lowest degree coefficient is nonzero, then any rational root

12



is in (list Q (P0 P) (Pn P)) :
Lemma QX root loc:forall (P:QX) (a:Q as CRing),

P!Zero[#]Zero -> P!a [=] Zero ->
In (Q can a) (list Q (P0 P) (Pn P)).

3.7 The extraction algorithm

The function QX find root tries 0 and every element of (list Q (P0 P) (Pn P))
to find a root of the polynomial :
Definition QX find root(P:QX):option Q as CRing
Lemma QX find root spec none:forall P,

QX find root P=None ->
forall q:Q as CRing, P!q[#]Zero.

Lemma QX find root spec some:forall P x,
QX find root P=Some x -> P!x[=]Zero.

We now build a recursive function which tries to find n roots (RX div P x is
the result of the euclidean division of P by (X − x) :
Fixpoint QX extract roots rec (n:nat) (P:QX):=
match n with | O => P | S n =>
match QX find root P with | None => P | Some x =>
QX extract roots rec n (RX div Q P x) end end.

We finally define the function QX extract roots by calling QX extract roots rec
with n = degP :
Definition QX extract roots (P:QX):=

QX extract roots rec (QX deg P) P.
And prove the specifications :
Lemma QX extract roots spec rat:forall P a,

P[#]Zero -> (QX extract roots P)!a[#]Zero.
Lemma QX extract roots spec nrat:forall (P:QX) (x:IR),

(forall y:Q as CRing, x[~=](inj Q rh y)) ->
(inj QX rh P)!x[=]Zero ->

(inj QX rh (QX extract roots P))!x[=]Zero.

3.8 Liouville’s theorem

We now have all the tools necessary to Liouville’s theorem for which we give
two versions :
Let a be an irrational real number :
Variable a:IR.
Hypothesis a irrat:forall x:Q, a[~=]inj Q IR x.
Let P be a nonzero rational polynomial which satisfies a :
Variable P:cpoly cring Q as CRing.
Hypothesis P nz:P[#]Zero.
Hypothesis a alg:(inj QX rh P)!a[=]Zero.
We define Liouville constant and Liouville degree such that :
Theorem Liouville theorem:forall (x:Q),

13



(Liouville constant[*]inj Q IR (1#Qden x)[^]Liouville degree)
[<=] AbsIR (inj Q IR x [-] a).

And here is the second version :
Theorem Liouville theorem2:

{n:nat|{C:IR|Zero[<]C|forall (x:Q),
(C[*]inj Q IR (1#Qden x)[^]n)

[<=]AbsIR(inj Q IR x[-]a)}}.

4 Conclusion and future work

Concerning the first part, using the two theorems (Euclidean division on polyno-
mials and the Cayley-Hamilton) that we proved in C-CoRN, and using a point
of view of categories (as seen in 2.3.2), we have now the basics in order to build
an algebraic numbers library in C-CoRN.
There are also probably interesting theorems that may be ported from SSReflect
to C-CoRN, as we have done with Cayley-Hamilton.

Concerning the second part, we have an algorithm of rational roots extrac-
tion from rational polynomials which leads to the proof of Liouville’s theorem.
Now, a nice thing would be to prove that Liouville’s number :

+∞∑
i=0

10−i!

is transcendental, by the contraposite of Liouville’s theorem. Indeed, this num-
ber was the first explicit example of a transcendental number (as we already
knew there were some, by the denombrability of algebraic numbers, but we did
not have any explicit).
However, with the formalization presented here, we could probably only show
that its value on any nonzero rational polynomial on this number is [˜=] (not
equal) to zero. A stronger result would be that it is [#] (apart) from zero.

References

[1] Y. Bertot, G. Gonthier, S.O. Biha, and I. Pasca. Canonical big operators.
Lecture Notes in Computer Science, 5170:86–101, 2008.

[2] S.O. Biha et al. Formalisation des mathématiques: une preuve du théorème
de Cayley-Hamilton. Journees Francophones des Langages Applicatifs,
pages 1–14, 2008.

[3] L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN, the constructive Coq
repository at Nijmegen. Lecture Notes in Computer Science, 3119:88–103,
2004.

[4] L. Cruz-Filipe and B. Spitters. Program extraction from large proof devel-
opments. Lecture notes in computer science, pages 205–220, 2003.

14



[5] H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. A constructive
algebraic hierarchy in Coq. Journal of Symbolic Computation, 34(4):271–
286, 2002.

[6] H. Geuvers, F. Wiedijk, and J. Zwanenburg. A constructive proof of the
Fundamental Theorem of Algebra without using the rationals. Lecture
notes in computer science, pages 96–111, 2002.

[7] G. Gonthier. A computer-checked proof of the four colour theorem. Avail-
able at research.microsoft.com/˜gonthier/4colproof. pdf.

[8] G. Gonthier and A. Mahboubi. A small scale reflection extension for the
Coq system. 2008.

[9] G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, and L. Théry. A modular
formalisation of finite group theory. Lecture Notes in Computer Science,
4732:86, 2007.

[10] M. Sozeau. Un environnement pour la programmation avec types depen-
dants. PhD thesis, Ph. D. thesis, Universite Paris 11, Orsay, France, 2008.

15


