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1 Introduction

In many computer vision and image processing applications, we are facing new
constraints due to the image sizes both in dimension with 3-D and 3-D+t med-
ical acquisition devices, and in resolution with VHR (Very High Resolution)
satellite images. This article deals with high performance image transformations
using quasi-affine transforms (QATSs for short), which can be viewed as a dis-
crete version of general affine transformations. QAT can approximate rotations
and scalings, and in some specific cases, QAT may also be one-to-one and onto
mappings from Z" to Z", leading to exact computations.

In dimension 2, the QAT appeared in several articles [12/3/45]. To sum-
marize the main results, the authors have proved several arithmetical results
on QAT in 2-D leading to efficient QAT algorithms. More precisely, thanks to
periodic properties of pavings induced by the reciprocal map, the image trans-
formation can be obtained using a set of precomputed canonical pavings. In this
paper, we focus on a theoretical analysis of n-dimensional QAT. The idea is
to investigate fundamental results in order to be able to design efficient trans-
formation algorithms in dimension 2 or 3. More precisely, we demonstrate the
arithmetical and periodic structures embedded in n—dimensional QAT.

In Section [2| we first detail preliminary notations and properties. Then, Sec-
tion [3] contains the main theoretical results leading to a generic n-D transforma-
tion algorithm sketched in Section [l In Sections [f| and [6] we details the QAT
algorithms in dimension 2 and 3.

2 Preliminaries

2.1 Notations

Before we introduce arithmetical properties of QAT in higher dimension, we first
detail the notations considered in this paper. Let n denotes the dimension of the
considered space, V; denotes the i*" coordinate of vector V, and M; ; denotes the
(1,7)t" coefficient of matrix M. We use the notation ged(a, b, . ..) for the greatest
common divisor of an arbitrary number of arguments, and lem(a, b, . . .) for their
least common multiple.



Let [%} denotes the quotient of the euclidean division of a by b, that is the
integer ¢ € Z such that a = bq + r satisfying 0 < r < |b| regardless of the sign of
dﬂ We consider the following generalization to n—dimensional vectors:

(%] )
: :

. \%
} = : and {} = : . (1)
2.2 Quasi-Affine Transformation Definitions

] )

Defined in dimension 2 in [TI2IBI4J5], we consider a straightforward generalization
to Z™ spaces.

Definition 1 (QAT). A quasi-affine transformation is a triple (w, M, V) €
Z x Mp(Z) x Z™ (we assume that det(M) #£ 0). The associated application is:
Zn RN Zn
Xr— {MX + V} .
w
And the associated affine application is:
Rn N Rn
MX+V
—_——.
w

X

In other words, a QAT is the composition of the associated affine application
and the integer part floor function.

Definition 2. A QAT is said to be contracting if w™ > |det(M)|, otherwise it
is said to be dilating.

In other words, a QAT is contracting if and only if the associated affine
application is contracting. Note that if w? = |det(M )], the QAT is dilating, even
if the associated affine application is an isometry.

Definition 3. The inverse of a QAT (w, M,V) is the QAT:
(det(M),w com(M)*, — com(M)*'V), (2)
where b denotes the transposed matriz and com(M) the co-factor matriz of ]\4E|

The associated affine application of the inverse of a QAT is therefore the
inverse of the affine application associated to the QAT. However, due to the
nested floor function, the composition f- f~! is not the identity function in the
general case.

In Section [] we have to consider a generalized form of the Bezout identity
in dimension 3:

! {%} denotes the corresponding remainder {%} =a-—2>b [%]
2 Remind that M com(M)" = com(M)'M = det(M)I,.



Proposition 1. V(a,b,c) € Z3,3(u,v,w) € Z3/au + bv + cw = ged(a, b, c) .

Proof. The proof is given in Sect.

3 QAT Properties in Higher Dimensions

Without loss of generality, we suppose that the QAT is contracting.

3.1 Pavings of a QAT

A key feature of a QAT in dimension 2 is the paving induced by the reciprocal
map of a discrete point. In the following, we adapt the definitions in higher
dimensions and prove that a QAT in Z" also carries a periodic paving.

Definition 4 (Paving). Let f be a QAT. ForY € Z™, we denote:
Py ={XeZ'/f(X)=Y}=f}(Y), (3)

Py is called order 1 paving of index Y of f.

Py can be interpreted as a subset of Z™ (maybe empty) that corresponds
to the reciprocal map of Y by f. We easily show that the set of pavings of a
QAT forms a paving of the considered space (see Fig. [1). In dimension 2, this
definition exactly coincides with previous ones [1I3I452].
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2D, these are the couples: Y = (z,v)).

Fig.1. Pavings of the QAT (84, <12 _11) , ( 150 >) with their indexes (in



Definition 5. Py is said arithmetically equivalent to Py (denoted Py = Py ) if:

(4)

/
VXEPY73X/€P2/{W} — {W} )

w w

Again, this definition is equivalent (as shown below) to those given in the
literature.

Theorem 1. The equivalence relationship is symmetric, i.e.:
Py =Py Py =Py. ()
Proof. The proof is given in Sect.

Figure [1] illustrates arithmetically equivalent pavings: the pavings of index
(0,1) and (5,1) are arithmetically equivalent (see Table [I]).
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Definition 6. Py and Py are said geometrically equivalent if:
H’UEZR/Py:Tv_Pz, (6)
where T, denotes the translation of vector v.

In Figure |1} the pavings of indexes (0,1) and (1,0) are geometrically equiva-
lent. In image processing purposes, when we want to transform a n—dimensional
image by a QAT, geometrically equivalent pavings will allow us to design fast
transformation algorithms.

Theorem 2. If Py = Py, then Py and Py are geometrically equivalent. Since
Py = Pz, there exwists X € Py and X' € Pz such that:

e g

Then v = X — X' is the translation vector:
Py =T, Py,.
In dimension 2, this theorem is also proved in [4].
Proof. The proof is given in Sect. [A22]

In a computational point of view, if a paving Py has been already computed,
and if we know that Py = Pz, then Pz can be obtained by translation of Py.
In Figure |1} the pavings of index (0,1) and (5,1) are arithmetically equivalent
(see Table, therefore they are geometrically equivalent (as we can check on
the figure). Note that the inverse implication is false: in Figure (1} the pavings of
index (0,1) and (1, 0) are geometrically equivalent but they are not arithmetically
equivalent (see Table [I]).

3.2 Paving Periodicity
Definition 7. V0 < i < n, We define the set A; as follows:
A = {o € N*/3(B))o<j<i € Z'Y(yo, - - -, yn—1) € Z",
Pyov"-vyi""av'"aynfl = Py0+/807---7yi—1+5i—1»yi7--<7yn—1}

Theorem 3 (Perdiodicity). The set of QAT pavings is n—periodic, in other
words

VO <i<mn,A; 75 0
Proof. The proof is given in Sect.

If we consider a@ = |det(M)| as in Sect. we have demonstrated the
periodic structure of QAT pavings since Py = Py 44, for each i. We investigate
now the quantities «; which are minimal for each dimension 4,



Definition 8. Y0 < i < n, let us consider ai; = min(A;). We define {3} }o<;j<i €
Z' and U; € Z"™ such that

n P . .
V(yo, s 7yn—1) €ZL", Pyy,...yitaiyn = TUiPy0+ﬂ8)‘-'7yi71+B271)yiv":ynfl :

Thanks to Theorem and using notations of Def.[8] let X € Py . yitai,.ym 1

/ ) ) MX+VY _ ) MX'+V
and X' € Pyo+567---,yi—1+ﬁ§,17yi7---,yn71’ such that {T} - {T} Then,

we have U; = X — X'.

Let us suppose that quantities o, ﬁ; and U; are given (see [6] for computation
details in dimension 2 and 3). To paraphrase above results, «; and its associated
U; and {B}} allows us to reduce the i*" component of ¥ while preserving the
geometrically equivalence relationship. If we repeat this reduction process to each
component from n— 1 down-to 0, we construct a point Y such that Py and Pyo
are geometrically equivalent. The following theorem formalizes this principle and
define the initial period paving Pyo.

o with

Theorem 4. Y(yo,...,Yn—1) € Z", we have Py, . 0

n—1
W = Z wiUi
=0

Yn—1

1 i
Vit wiB]

w,; =
K3 a;

and ¥n >1i >0 v
=7 0 __ yi+2;;.1+1 w; B}
Yi=9Y" &

Proof. The proof is given in Sect. [A-4]

Therefore, if we already computed the pavings Py o for 0 < ¢? < w,

R
we can obtain any paving by translation of one of these pavings.
3.3 Super-paving of a QAT

We now describe how to compute these initial period pavings based on the notion
of super-paving (see Fig. |2).

Definition 9. A super-paving of a QAT is the set P such that
P = U Pyo
0§Y0<(O‘07-“70‘n71)

In other words, the super-paving is the union of all pavings of the initial
period. In dimension 2, this definition coincides with definitions given in [AJ3l/5].

Theorem 5. P is the paving P, . o0y of the QAT defined by:

- 0 - 0
wlemo<ijcn(oy), | & -, ¢ M| - V], (7)



withV0<i<n-—1,

_ lemogjcn1(ay)

0;

Proof. The proof is given in Sect.

Fig. 2. Super-paving decomposition of the QAT defined in Fig. [I} Arrows illus-
trate a basis of the periodic structure.

Hence, we can associate a canonical paving to each point of the super-paving.
More precisely, the super-paving allows us to compute the equivalence classes
for the arithmetical equivalence relationship between two pavings.

3.4 Paving Construction

In this section, we focus on an arithmetic paving construction algorithm. Hence,
using the results of the previous section, such a construction algorithm will be
used to compute canonical pavings in the super-paving.

Definition 10. The matriz T is the Hermite Normal Form of the QAT matriz
M if:

— T is upper triangular, with coefficients {T;;} such that T;; > 0;
— 3H € GL,(Z)/MH =T.

If M is nonsingular integer matrix, the Hermite Normal Form exists. Note
also that if H € M,,(Z), then H € GL,(Z) < |det(H)| = 1.

. 12 —11
For example, given (18 36 ), we have:

12 —11 2 1\ (3512
18 36 —-10) \018/"



Using the Hermite Normal Form, we can design a fast paving computation
algorithm formalized in the following theorem:

Theorem 6. VY € Z", let MH =T be the Hermite Normal Form of the QAT
matrixz M, then

Py = {HX / Yn >1 > O,Ai(Xile,...,Xn,l) <X; < Bi(XiJrl,...,Xn,l)}
(8)

With
Ai(Xig1y ooy Xpo1) = — Z];—Q—l i,j<% ,
Bi(Xiy1,.. ., Xpn1) = — ( ) %7 +1 1,545
i,

In [405], a similar result can be obtained in dimension 2. However, the Hermite
Normal Form formalization allows us to prove the result in higher dimension.
To prove Theorem [6] let us first consider the following technical lemma:

Lemma 1. Let a,b,q,x € Z with ¢ > 0, then

7)<
a<qr<bes —|—|<z<-—-|—]|.
q q

Proof. The proof is detailed in Sect. [A-6]

We can now prove the Theorem [f] (cf Sect. [A.7). The implementation of the
construction algorithm is straightforward: we just have to consider n nested loop
such that the loop with level i goes from A; to B; quantities. See [0] for details
in dimension 2 and 3.

4 A Generic QAT Algorithm

In Algorithm |1} we give the generic algorithm applying a contracting QAT f to
an image A (see Fig. [3]). The principle is that we give to each pixel Y of image
B the average color of the paving Py in image A.

If f is a dilating QAT, we obtain the very similar Algorithm [2] which principle
is that firstly we replace f with f~!, and then we give the color of each pixel
Y of image A to each pixel of Py in image B. In both algorithms, some ele-
ments cannot be computed in arbitrary dimension n. Indeed, even if there exist
algorithms to compute the Hermite Normal Form of an arbitrary square integer
matrix [7], there is no generic algorithm to obtain the minimal periodicities {«;}.

In the following sections, we detail the computation of the minimal period-
icities in dimension 2 and 3.



Algorithm 1: Generic QAT algorithm for a contracting QAT
Input: a contracting QAT f := (w, M, V), an image A: Z" — Z
Output: a transformed image B: Z" — Z
Compute the Hermite Normal Form of the matrix M;
Determine the minimal periodicities {«;} and vectors {U;};
Use Theorems [5] and [6] to compute the canonical pavings in the super-paving P;
foreach Y € B do
Find Y° and W such that Py = Tw Pyo;
foreach Z € Pyo do
L c— A(Tw Z); // we read the color in the initial image
sum < sum + c;

B(Y) « sum/|Pyol; // we set the color

Algorithm 2: Generic QAT algorithm for a dilating QAT
Input: a dilating QAT f := (w,M,V), an image A: Z" — Z
Output: a transformed image B: Z" — Z
Replace f with f~1;
Compute the Hermite Normal Form of the matrix M,
Determine the minimal periodicities {«;} and vectors {U;};
Use Theorems [5] and [6] to compute the canonical pavings in the super-paving P;
foreach Y € A do
Find Y° and W such that Py = Tw Pyo;

c— AY); // we read the color in the initial image
foreach Z € Pyo do
L B(TwZ) < ¢ // we set the color

5 QAT in Dimension 2

Let us consider the QAT (w, M, V) with M = <a0 b0> and V = (60)_
co do fo

5.1 Hermite Normal Form and Paving Construction

Even if algorithms exist to compute Hermine Normal Form [7], we can define
explicit formulas in dimension 2.

Lemma 2. The Hermite Normal Form of M can be obtained such that M Hi Hy =
T with:

IQ Zf Co = O,

ap b1
H, = dy =MH
! 0/ to otherwise. <C1 dl) !
_CO Vo



(a) (b)

Fig. 3. Illustration in dimension 2 of the QAT algorithm when f is contracting
(a) and dilating (b). In both cases, we use the canonical pavings contained in
the super-paving to speed-up the transformation.

I ifa1 > 0,

Hy = -1
2 0 otherwise
01

with ug and vy such that ugcy + vodo = ged(co, do), and ¢, = m, dy =

do
ged(co,do)

Proof. To prove the lemma, we need to prove that |det(H1Hz)| = 1 and that
M H1H, is an integer upper triangular matrix with T;; > 0. Details are given in
Sect.

In the following, we define H = H1{Hy and MH =T = (g I;) Thanks to
Theorem @ optimal algorithm can be designed to construct the paving F; ;

associated to the pixel (4, 7). First, using the notation of Theorem |§|, we have:

Al_—[w},Bl__{M]

Cc C

Aaly) = - [ gy — - [ 2Lt ]
a a

Hence, Algorithm [3] details the P; ; construction. Note that the algorithm is
optimal and output sensitive since it only scans P; ; points. Furthermore, this
algorithm is very efficient since it only contains integer number computations
without any If test. Note that similar algorithm exists in 2-D [4l5], but the
Hermite Normal Form allows to have a compact algorithm which implementation
is straightforward.



Algorithm 3: Paving Construction in 2-D

Input: a contracting QAT f := (w, M, V) and the Hermite Normal Form MH =T

Output: paving P; ;

[ —wi+fo ] .
e ;

By — — [—w(j+l)+fo] .

for y — A; to B; - 1 do
—witegtby
a

Ay — —

A0<——[

—w(i+1l)+eg+by
By — — [%

for r — Agp to By - 1 do

[ #()er

5.2 Minimal Periodicity and Super-paving Computation

In this section, we first present explicit formulas to compute the minimal periods
of a QAT. Let

, a , w wy,
h ged(a,w) »Wh ged(a,w)’ ( 0 )
The following theorem allows us to obtain the first periodicity along the
r—axis.

Theorem 7 (Horizontal Periodicity). Let oy, = a), and U be such that U =
HY . Then,

an>0 Piia,; =P, and Y(i,j) € Z* Piroy,; =TuPij.
Proof. The proof is detailed in Sec.

According to notations in Def. [8| we can conclude that ap € Ag. We now prove
that a4 in the minimal period.

Theorem 8. The period «y, is the minimal horizontal period, i.e. ap = ap.
Proof. The proof is detailed in Sec.

Let us consider now the vertical periodicity. We define

/

a bw?) "

w w

/ /

/ _ = = e A —
= gcd(c,w ' gcd(c w)’a” ged(a, bw!, w)’¢ ged(a, bw’,w)’w” ged(a, bwl,w)’

= ged(al,w!), up and vy such that: auy + wlv; = ged(al,,wl)) (= al),
—¢u
fo=—¢v1,Y = (wfai) :

Theorem 9 (Vertical Periodicity). Let o, = ¢, o), and U = HY . Then,

ay >0 Pijia, =Py and  V(i,j) € 2% Pijra, = TuPip, ;-



Then, «, € A;. Let show that «, is the minimal vertical period :

Proof. The proof is given in Sec. [A12]
Theorem 10. The period o, is the minimal vertical period, i.e. o, = ay.
Proof. The proof is detailed in Sec.

We now have both the horizontal and vertical periods and translation vectors to

generate the pavings. We need now to specify the super-paving construction to

compute the canonical tiles of the initial period. Using Theorem [5] we have
lem(ag, av1) 0. — lem(avg, a1)

0o = ,01 =
&%) (€3]

With both Theorem [§] and [6] we obtain

P = {H (Zj) JA| <y < Bjand Aj(y) <z < B(')(y)}

where o o o
[ g r_ —w lcm o, g +601fo
4= [916}731_ { fic }
Ap(y) = - {W} ,Bi(y) = — [—w ICm(ozo,aé) + Ooeg + Goby]
ha o

Hence,

A= - | 2] g - |22

c a
Furthermore, using the notations of Def.

!

wlem(ap, 1) war  wiag wlem(ag, 1)  way  wpag

=——=2"=ud e€Z d ——————~ = = nEL
01c ¢ c Yoy A Ooa a aj, “h
Finally,
wlem(ag, 1) [ fo wao wlem(ag, 1) [eo+ by wag
B/ — ) _ |2y — A/ d B/ — Y _ — A/
A 1+7c and By(y) foa a o(y)JFia

For each point X € P, we need to determine the paving index Y to which X
belongs to. Since X € Py & [W] =Y, we can design a simple algorithm
(Algorithm that construct all the initial period pavings while scanning points
in P. With initial period pavings and translation vectors, all other QAT pavings
will be obtained using a simple translation. The computational cost of Alg. []
exactly corresponds to the number of pavings in the initial period.

2

Proposition 2. The number of pavings of the initial period is wlw! = Zed(

Proof. The proof is given in Section [A-T4]

w
c,w) ged(a,bw! ,w) *



Algorithm 4: Super-paving and initial period pavings construction in 2-D.
-4,
for y — A] to A} + 221 - 1 do

Al — — [ﬂo+by] :

for z — A{ to Ay + 220 - 1 do
g
v | T

xr
H(y) € Pyo ;

5.3 QAT Algorithm in 2-D

In [6U8], we have sketched a set of generic algorithms to apply a QAT on an n—D
image. To implement those algorithms in dimension 2, we first use Algorithm
to generate the initial period pavings. Then, to each point Y = (i,7), we need
to determine Y° = (i%, j°) and W such that Py = Ty Pyo.

Using Theorem [, W = woUy + w,U; with

w = [J} and  wp = [Hvllﬂ and (ioJo):({leﬂé},{J}).
aq (o) Qo Qg

Algorithm [5| details the transformation algorithm. In this algorithm, ¢(3, j)
returns the image color at (i, 7). Furthermore, g(E) with E C Z? returns a color
associated to the set E (e.g. the mean color). Again, similar algorithm can be
found in the literature in dimension 2 [34l5].

6 QAT in Dimension 3

In dimension 3, we use a similar framework as in 2-D: we first define the Hermite
Normal Form, the minimal periods and then the transformation algorithm.

6.1 Hermite Normal Form and Paving Construction

ag by co Jo
Let us consider a QAT (w, M, V) with M = | dp eg fo | and V = | ko
go ho 1o lo

In Sect. we present explicit formulas to compute the Hermite Normal
Form in 3-D. In the following, we define H = HiHsH3H, and MH =T =
abc
0 d e |. Thanks Hermite decomposition, we have a > 0, d > 0 and f > 0. To
00f
construct the paving of index (4, j, k) and thanks to Theorem @ we have:



Algorithm 5: QAT algorithm in 2-D

Input: A QAT (w, M, V) and an image g : [0,%0] X [0,¢1] — Z

Output: an image h : [ming, mazo] X [mini, maz1] — Z

Compute min; and maz; quantities from t;;

if f dilating then

fe=r;

Compute the Hermite Normal Form of the matrix M;

Compute the minimal periodicities {e, a1} and vectors {Ug, U1 };

Use Algorithm to compute the canonical pavings in the super-paving P;
for i — 0 to tp — 1 do

for j — 0tot; —1do
Compute W, 4%, 50 ;
h(Tw Po_jo) — g(i.3) ;

else
Compute the Hermite Normal Form of the matrix M;
Compute the minimal periodicities {e, @1} and vectors {Ug, U1 };
Use Algorithm to compute the canonical pavings in the super-paving P;
for i «— ming to mazxy — 1 do
for j «— miny to mazx; — 1 do
Compute W, i%, 50 ;
h(i,j) < g(Tw Pig,jq) 3

po= - [EED) gy o [zl Dah]
Ay(z) = — [_“’J*’W Bi(z) = — [—W(J’+1) +ko+ez}

d d

—wi + jo + by + cz] —w(i+ 1)+ jo+ by + cz
Aol 2) = — [P E] ) - |2y ]

Algorithm 6: Paving construction in 3-D

Ay — — —wk+lg
f

By — — [fwk;l)ﬂo} .

for z «+— A5 to B> - 1 do

itk
AU__[W 7

By — — [—u<j+1zl+k0+ez] :

for y — A; to B; - 1 do

—witiotbyte
th_[ witiotbytes] .

By — — [—w<i+1)+jo+by+cz] :

for r — Agp to By - 1 do
T
Hly| €Pijr;
z




6.2 Minimal Periodicity and Super-paving Construction

In dimension 3, we need to compute the periodicity along each dimension. Let
)

Y=|0
0

\ [ a [ w
us first denote aj, = 35, Wh = gea(ao)

Theorem 11 (Horizontal Periodicity). Let o, = a), and U = HY. Then
an >0, Pitay jk = Pijr and ¥(i,j,k) € Z°, Piyay, jx = TuPijk -

Proof. The proof is detailed in Sect.
Theorem 12. The period ay s a minimal horizontal period, i.e. ap = .
Proof. The proof is given in Sect. [A:17]

Concerning the vertical period, let:

!

/ d / w / a bw;, "

g = * Y g -
v ged(d,w) s gcd(d,w)’a” gcd(a,bw;,w)’gZS

(d,
al, = ged(al,w!)), uy and vy are such that : a,u; + w) vy = ged(al,wl)(= o),
—ouy
Bo=—¢v1,Y = | wya,
0

w

ged(a, bw!, w) W = ged(a, bw!,w)’

Theorem 13 (Vertical Periodicity). Let o, = dl,a,,U = HY. Then o, >

Vv

0, P jravk = Pivgeje and (i, 5. k) € Z3, P; jray, & = TuPitgo,j.k -

Proof. The proof is given in Sect. [A:18]
Theorem 14. The period o, is a minimal vertical period, i.e. a, = .

Proof. The proof is detail-led in Sect. [A719]



And for the last period, let:

!
! f / w U d Wy "

w

= = d = = =
Ta ged(w, )77~ ged(w, £)’ gcd(d,ew&,w)’qb ged(d, ewly,w)’ ¥4 T ged(d, ewy, w)’

uy and vy are such that : dju; + wjv; = ged(d), w))), ¥ = !y ged(d),w)) — bouy,

Y

a

/ /
ag = Wb 71/} = w!/b ’
ng( 1/)7 7gcd d’ w ) ng( wa ’gcd d’“":i, )
wi/b
w ged(d,w!/
(,1// = X = w'lb

ged(a, 1, w ,7gcd(d, ,,)) ged(a, 1, w ,7gcd(d, ,’,))

d = ng(adv)(a m) ad = Oéd ng( Qzawd)

ug,ve and we are such that : ajus + xve + wl wo = ged(aly, x, Wy ) (= o)),

d/
k= —¢'va, Bo = —¢'wg, f1 = —dvi0y; — km
71#’“2
Y = | —duag + kgt on
Wy

Theorem 15 (Depth Periodicity). Let g = o;f},U = HY . Then

aa >0 Pijrras = Pispojrmn  and V(i 5,k) € 2%, Pyjpra, = TuPispy,jp ik
Proof. The proof is detailed in Sect. [A:20]

Theorem 16. The period ag is a minimal depth period, i.e. ag = as.

Proof. The proof is detailed in Sect. [A:21]

Based on these periods, we can construct the super-paving and all the initial
period pavings. As in dimension 2, for each point X € P, we need to determine
the paving index Y to which X belongs to. Since X € Py < [W] =Y,
Algorithm [7] details the initial period paving construction with scanning points
in P.

The computational cost of Alg. [7] exactly corresponds to the number of
pavings in the initial period.

Proposition 3. The number of pavings of the initial period is wiwjw!’.

In the Proposition statement, we do not give the closed formula as in 2-D.

However, w/w/jw! is equal to w? divided by a product of three ged().

Proof. The proof is detailed in Sect.
Using Theorems [5] and [6] we have

lem(ayg, aq, )
591 = 791 = ’
%)) aq (&)

lem(ayg, aq, o) lem(ayg, aq, o)

0o =




Algorithm 7: Super-paving and initial period pavings construction in 3-D.

1
A -]
for z « A} to Ay + “32 - 1 do
Af o - [Rade]
for y — A} to A} + 251 - 1 do
A:)(;i[jo«#bay«l»czd];

for z — A{ to Ay + 220 - 1 do

and
x

P=<H|y]| /A, <z< B Al(2) <y < Bj(z) and Ay(y,z) <z < By(y, 2)
z

with 4} = — [4], A4(z) = — [B4e2], Ay, 2) = — [z ]y = af 4 e,
Bi(z) = Al(2) + “F, and By(y,2) = Aj(y, z) + <2 (see Sect. for details).

6.3 QAT Algorithm in 3-D

To obtain the overall QAT algorithm, we need to find both the initial period
paving index and the translation vector associated to a given paving F; ;.
Hence, thanks to Theorem @ we have

V(i,j7 k) S Z3, Pi,j,k = TWPiO,jO,kO with W = woUy + w1Uyr + woUs

(%) (&)

_ |+ w1 By + w35 i+ w135 + w233
0< 0 = {Z w1y + w2l } < ag, wg = {Z w1 + w2l .
(a7 (7))

ag

. 9 ) )
andofkoz{k}<a2,w2={k], OSJOZ{M}<a1,w1:{J+wQﬁl

7 Experiments

The algorithms were implemented in both 2D and 3D, with different refinements
in order to be able to compare the implementations. The backward mapping (B.
M. for short) implementation let us compare the paving periodicity method with
the widely used backward mapping method [9]. The simple implementation

)

aq

|



Algorithm 8: QAT Algorithm in 3-D.

Input: A QAT (w, M,V) and an image g : [0, to] X [0,¢1] X [0,t2] — Z
Output: an image h : [ming, mazo] X [mini, maz1] X [ming, maxs) — Z
Compute min; and max; quantities from t;;
if f dilating then
fe=r;
Compute the Hermite Normal Form of the matrix M;
Compute the minimal periodicities {e, a1, a2} and vectors {U¢,U1,U3};
Use Algorithm mto compute the canonical pavings in the super-paving P;
for i — 0 to tp — 1 do
for j — 0tot; —1do
for k — 0 tota — 1 do
Compute W, i, 5%, k° ;
h(Tw Pyo ;0 x0) < (3,3, k) ;

else
Compute the Hermite Normal Form of the matrix M;
Compute the minimal periodicities {eg, a1, a2} and vectors {U¢,U1,U2};
Use Algorithm to compute the canonical pavings in the super-paving P;
for i «<— ming to maxg — 1 do
for j — miny to max; — 1 do
for k — 0 tota — 1 do
Compute W, °, 5%, k° ;
h(i, j, k) < g(Tw Pjo ;0 10) ;

does not use pavings periodicity and uses algorithms [3] and [6] for every paving.
The periodicity implementation uses the periodicity and the algorithms 5] and
The noMultiply implementation additionally uses a method presented in [4]
which uses a handling of remains instead of computing a matrix product in [
and [7} The experiments are performed on an Intel© Centrino© Duo T2080 (2
x 1.73 GHz) in monothread and we give on one hand the time of computation
and on the other hand the number of elementary instructions. The QATs used
are the following : In 2-D:

10 for the contracting application

(w, (i 34> ) (8)) where w = ¢ 5 for the isometry

2 for the dilating application

In 3-D:
9 —20 —12 0 100 for the contracting application
w,[12 15 —16],10 where w = ¢ 25 for the isometry
20 0 15 0 4 for the dilating application

The pictures are of size : 200 x 171 in 2-D and 10 x 10 x 10 in 3-D (simple cube).

Figure [ illustrates the results in dimension 2. As expected, when comparing
B.M. and Periodicity, results are similar for both contracting and isometry
QATs. Differences appear when we dilating QAT is considered. Indeed, since a
unique color is associated to a paving in the Periodicity algorithm, the trans-
formed image contains sharp edges (Fig[d}(I)) On the other hand, the interpo-
lation process in the B.M. algorithm makes the image blurred. To compare the



time efficiency (Table , we have considered two quantities: the total number
of elementary operations of the main loolﬂ and the overall computational time

in seconds.

2D - instructions (time in sec.)

B.M. simple Periodicity noMultiply
contracting| 1 607 774 (0.036) |64 536 315 (0.06) |29 578 702 (0.036)|27 679 044 (0.036)
isometry |63 058 160 (0.112) |57 619 374 (0.064)(39 682 795 (0.056)|35 875 892 (0.044)
dilating |391 622 017 (0.404)(185 956 768 (0.12)|87 490 567 (0.084)|83 472 387 (0.078)
3D - instructions (time in sec.) ‘
B.M. simple Periodicity
contracting 15 864 982 (0.02) 47 303 861 (0.052) | 12 865 125 (0.012)
isometry 750 102 224 (0.416) 51 121 827 (0.068) | 15 234 007 (0.016)
dilating {170 072 035 547 (79.637)|2 479 676 409 (1.384)|7 760 893 011 (0.632)

Table 2. Comparative evaluation in 2-D and 3-D.

Table [2] and Figure [ present the result in dimension 3. For the sake of
clarity, we have only considered an input binary image but the transformation
algorithms can be applied to 3-D color images.

8 Conclusion and Future Works

In this paper, we have demonstrated that in higher dimension, Quasi-Affine
Transformations contain arithmetical properties leading to the fact that the
induced pavings are n—periodic. Furthermore, thanks to the Hermite Normal
Form of the QAT matrix, we have presented efficient algorithms to construct a
given paving and to compute a set of canonical pavings. From all these theoretical
results, fast transformation algorithms have been designed which outperform
classical ones.

However, several future works exist. First, as detailed in Sections and
the super-paving of a QAT contains a set of arithmetically distinct pavings.
However, two arithmetical distinct pavings may be geometrically equivalent.
Hence, a subset of the super-paving may be enough to design a fast algorithm.
In dimension 2, in [I34l5], the authors have investigated another structure, so-
called generative strip, which removes some arithmetical distinct pavings whose
geometry are identical. Even if the generalization in higher dimension of this
object is not trivial, it may be interesting to investigate theoretical techniques
to reduce the canonical paving set. Finally, a generic algorithm to compute the
minimal periodicities is challenging.

3 obtained with the valgrind and profiling tool.
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Fig. 4. Results in dimension 2: (a — d) Contracting QAT (B.M. (a — b) and
Periodicity (¢—d)); (e—h) Isometry (B.M. and Periodicity); (i —!) Dilating
(B.M. and Periodicity). (m) and (n) illustrate the paving structure of the
dilating QAT.
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Fig. 5. Results in dimension 3: (¢ — b) Contracting (B.M. and Periodicity),
(¢ — d) Isometry and (e — f) Dilating (B.M. and Periodicity). (g) illustrates
the paving structure of the dilating QAT.



A  Proofs

A.1 Theorem [T

Proof. Let Py be a paving arithmetically equivalent to Pz, let us show that Py
is arithmetically equivalent to Py-. Let X' € Py, let Xy € Py, there is X, € Pz

such that:
MXy+V | MX,+V
w N w

(9)
Let X = Xy + X' — X, thus
MX+V=MXo+V)+(MX' +V) - (MX;+V)

= (WY + {W}) + (wZ + {W})

w w
/
— (WZ + {]\W})
w

[MXo+ V] +{MX’+V}

w w

Hence, from the uniqueness of the Euclidean positive remainder division,

{MX + V} C[MXy+V]

/
hence X € Py and {MXJrV} = {MX JrV}
w

w w w

O

A.2 Theorem [2]
Proof. Let us suppose that Py = Pz, and let Xy € Py and X € Pz be such
that :
MXo+V)] [MX{+V
w B w

Let v = X — X|. To prove the theorem, we need to prove that Py = T, Pz. We
first prove that Py C T, Pz. If X € Py,

M(X -v)+V=MX+X,-Xo)+V
=MX+V)+(MX,+V)—(MX,+V)

w w

g {027

)

s [MEV)

w



Therefore X —v € Py, and thus X € T, Pz. We now prove that Py D Ty, Py.
If X' € Py,
MX' +v)+V=MX +X,—-X))+V
=MX'"+V)+ (MXo+V)— (MXy+V)
MX' +V MXy+V
o VY 01V,

w w
!/
—(WZ + {]\W})
w

/
oy (M)

w

Therefore X' +v € Py.0J

A.3 Theorem [3]

Proof. Given 0 < i < n,let us suppose that V0 < j < i, 8; = 0 and a = |det(M)].
Let Y € Z", X € Py, and

det(M

X =X+ -—"72
T Tdet(3)]

wcom(M)te;

with e; being the i—th vector of the canonical basis of R™. We prove that A; # ()
since Py = Py tqe;:

MX’+V—MX+V+M;%wcom(M)t6i
=wY + {J\IX;;—V} w SZEE%; M com(M)'e;
— WY + {MXW+ V} tw ISEE%;I det(M)e;
wY + {MX ha V} + w|det(M)le;
oo (T

Hence, {MX/H/} = {M)ffv} and thus X’ € Py yqe,. Finally, Py qe, = Py

w

which proves that o € A;.00

A.4 Theorem [

Proof. Let us denote 7 (j) the proposition

P,

Yo, Yn—1

= T —1 P —1 i —1 i .
Z?:j w;U; y0+2?:]‘ wiﬁéa-uv?/j—l“!‘E?:j wiﬁ;,py?w--vyzfl



We consider the following induction: given n > p > 0, we suppose 7 (p + 1) and
prove 7 (p). As a consequence of Def.

n p—
V(Zl, cey Zn—l) €Z ’PZ07---7Zp+ap7---1Zn—1 - TUpPZO+5§,...;ZP—1+65_1)Zp)"wznfl .

Hence, Vk € Z, we have

Peo, o zpthopznos = ThU, Pog bkl o2y 145821 2z -
With
k=w,
. o n—1 %
V0 < ] <p, Zi =Yj + Zi:erl wiﬁj
- _,0
Vp<j<mn,z=vy;
we obtain
P n—1 A n—1 Al 0 0 0
y0+zi:p+1 wlﬁ07~“ayp71+zi:p+1 wiﬁp_layp+wpap1yp+1w~wyn_1

= TwpUpP
(10)
Since 7 (p + 1) is true, and since

n—1

Yp + Z w]ﬂg = 3/2 + apwp,
Jj=p+1

we have

Pyo7~..7yn—1 = TZZZPIJFI wiU,;Pyo+Z?;p1+l wiﬁé,,..,yp_1+2?;p1+l w,ﬂ;71,yg—o—apw,,,ngrl,...,ygil
We can identify the left side of Eq. to the right part of the right side of
(11), summing up the translation vectors leads to 7 (p).
Since 7 (n) : Py,,.. =T,P, is trivial, we prove 7 (0) and thus the

sYn—1 Yoy--yYn—1
theorem.[]

A.5 Theorem [5
Proof. Let X € Z",

(%)
MX +V
XePe < [+] <
w
Qp—1
MX +V o
& §7+< since ag,...,Qp—1 € Z
w

Yot 1) WiBhs e Yp— 1+ 3t Wi By g



MX+V )
& < ——<|:
0 0 enfl 0 - enfl Qp—1
since 0g,...,0,_1 >0
0 0o 1
) ) ) MX+V
Cd B Y R —Q < lemo<icn (i) | -
0 0 - 0,1 1
0o 0 0o - 0
: MX o, : Vv
O . . . + . . . 1
0 -0, 4 0 -0,
“lis wlemo<ien () <
0 0<i<n &g 1
T /6 0 O - 0 1
D | Mx |V
0 0,1 0 0,1 .
=4 = :
wlemop<icn () 0

This ends the proof since the last statement prove that X belongs to the paving
(0,...,0) of the QAT defined in Eq. @.D

A.6 Lemmal(ll

Proof.
f : L _el3)
a{}qu{} WithOS{a}<q|qé i !
q q q | q
—al] a
= —|—|<-+1
L 9 ] q
S ) Y
q

Henceagx@—[_a} <x—|—1<:>—[_a} Sx(sincexand—[_a] €Z)
q q q q



q
<17
= -<—|—
q q
—b b
s3]
q q
b -b
Hencex<@x<—{}
q q
. a b
Finally a < gz <b& - <z < -
q q
— -b
@[a]§x<{} .0
q q
A.7 Theorem [6]
Proof. Let X,Y,Z € Z" such that X = H~'Z,
MZ
ZEPy<:>|:+V:|=Y
TX
w
n—1
®V0§i<n,wyi§ZTi,ij+Vi<w(yi—|—1)
j=i
n—1
eV0<i<nwy— > TiX;—Vi<TiX; <wly +1) — Z
Jj=i+1 Jj=i+1

Thanks to Lemmall] Z € Py is equivalent to
VO<i<n Ai(Xit1,. s Xno1) £ X < Bi(Xig1, .., Xpn1) O

A.8 Proposition

Proof. Let (a,b,c) € Z3, common divisors to a, b and ¢ divide a and b, and
therefore divide ged(a,b). Conversely, common divisors to ged(a,b) and ¢ also
divide a and b. Therefore, common divisors to a, b and ¢ are exactly common

divisors to ged(a, b) and c. Hence:
ged(a, b, ¢) = ged(ged(a, b), ¢)
Bezout’s identity gives
(o, vo) € Z*Jaug + bvy = ged(a, b)
and 3(up,vy) € Z?/ ged(a, b)ug + cvy = ged(ged(a, b), ¢) = ged(a, b, ¢)



Hence
auguy + buouy + cvy; = ged(a, b, ¢)

And the result is obtained with u = ugu1, v = vou; and w = v1.0J

A.9 Lemma 2
Proof. First of all, let us define the H; matrix. If ¢y = 0, let us define H; = Iﬂ.

Otherwise, let ug and vg such that:
ugco + vodo = ged(co, do) 5

/ Co J— do
and Co = ged(co,do)? do — ged(co,do) ”

/
Let Hl = ( dO, UO).
—Cp Vo

_ / ! —
Hence we have det(H;) = ugcj+uvody = 1 and M Hy = <00d6 = docly = 0 couo + dovo

In both cases, we have |det(H;)| = 1 and M H; us upper triangular. Let us
denote
(a1 b1
i = (45,

In order to ensure that diagonal coefficients are positive, we can first observe
that

(lodé — b006 agUg + b()’l)o)

¢1 = coup + dovg = ged(co, do) > 0.
Hence, if a; > 0, we define Hy = I5. Otherwise, we define Hy such that

—-10
w=(41)
Finally, in both cases, we have |det(Hz)| = 1 and M Hq Hs is upper triangular

with positive integers in the diagonal. To conclude, we denote H = H;Hy and
MH =T, leading to the Hermite Normal Form.[]

A.10 Theorem [T

Proof. First, since a > 0 (Hermite Normal Form), we have ay, > 0. Then, MU =

_fawp\ _ (apw) _  [an . 2
TY<O><O>M<O . Given X € Z*,

MX-U)+V =MX+V - MU
. [MX; V] . {MXw—i—V} . <06,>
(- (0)

4 T,, denotes the identity matrix in M, (Z).



w w 0 w
To conclude, let (i,7) € Z2, if X € Piiq, j, we have X — U € P, ; and
therefore P4, j = P; ;. This also gives the vector of translation : X —(X -U) =
U

Hence, {M(X*UHV} _ [MX+V] _ (ah) and {M(XfU)+V} _ {M)§,+V}-

A.11 Theorem
Proof. Let us first prove that «y divides ag. Using Def. [8] we have
V(i,7) € Z*, Pty = Tu Py
Given (i,j) € Z*, X € Pita,; and X’ = X — U, we have X’ € P,; and
{MELV Y — {W} If we denote H~'U = (Zj), we obtain

T @) = MU =M(X - X')

= (MX+V)—(MX'+V)
o (57) =) == (3).

{am + by = way

which implies
cy=20
Thanks to the Hermite Normal Form, ¢ # 0, hence we have y = 0. Then,
(12) = az = wap = ajz = wjap = a,|wy,a0, or ged(ay,wy,) = 1.

Thanks to the Gauss Theorem, a’h|ao and thus ayp|ag. Finally, by definition
of g, ay = .

A.12 Theorem

Proof. Since ¢ > 0 (Hermite Normal Form), we have «, > 0. First,

_ ’or
MU =TY — ( apuy + bwvav>

!’
Cw,, 00,

/ A ! / ! / !
_ <avbwvu1 + bwvav> _ (bwv(avul + ozv)>
= o —

chwal Wy,

/ 1
_ bw, wi vy _ owvy

Wty Wty
(o

Ay



Let X € 72,

MX-U)+V=MX+V-MU
iy {M;;: VJ/+ {MX;LV} _Lg_of}?
-G

Hence, [M(X—U)+V] _ [MX+V] _ (-ﬁo) and {M(X—U)-H/} _ {M)ffv}-

w w Oéq) w

Let (i,7) € Z%, if X € P, jta,, we have X — U € P14, ; and therefore
P jta, = Piyp,,;- This also gives the vector of translation : X — (X —U) =U
]

A.13 Theorem [10l

Proof. The number of pavings of the initial period is equal to the number of
points in the super-paving. Hence,

wopg W w2aoa1

a C ac
a  cged(ay,,wy)
cd(a,w cd(c,w
_ 2 eedlow) ged(ew)
ac

> ged(ay,wy)
ged(a,w) ged(e, w)

2 ng( g‘cd(a:llzwg,w) ’ g‘cd(a:zw{),w) )
ged(a,w) ged (e, w)

2 ged(a,w)
ged(a, w) ged(e,w) ged(a, bw!), w)
w w

- ged(c,w) ged(a, bwl), w)

o
= Wy Wy,

O

A.14 Proposition

Proof. The number of pavings of the initial period is equal to the number of
points in the super-paving. Hence,

W woy way w  wged(al,,wl)) wged(al, x,w]') ged(dl, wl)
a d f = ged(e,w) ged(dw) ged(f, w)
w wged(a, w) weged(aly, x,wl’) ged(d, w)

- ged(a, w) ged(d,w) ged(a, bw),w) ged(f,w) ged(d, ew)), w)



w wged(al, x,wy)
=w
ged(a, bwl), w) ged(f,w) ged(d, ewl), w)
_ w;wgwgcd(afﬁx,wg’)
ged(a, bw!), w)

wged(a L‘/{Nyw)

o ? ged(d],w!

b 1"
god(a, bz, w) ged(a, v, w, zorrioms)

wged(a, 7gcdb(‘jl,w),w)

b(}.)//
w d
ng(aa bgcd(d,w) ) w) ng(a’a wa w, gcd(dfi,w('j’ )
w
Vi
= ded 77
bw
d
ng(aa 7/}3 wv ng(dfivw,’i’ )
= whwlwl’

O

A.15 Lemma[3
Lemma 3. The Hermite Normal Form of M is such that MH HoHsHy = T

with:
I3 if go =0, b
h 0 a1 b1 c1
H; = O, 1o therwi di el f1 | = MH;
—go vo 0 otherwise. g1 b1 i
0 01
I3 if n =0, .
10 0 42 b2 €2
Hy; = Y herwi dy ey fo | = MHiH>
0 1/ UL otherwise. g2 ha iz
0—g1 v
I3 if do =0, .
o 0 as 03 c3
Hy=q [ " eri ds es fs | = MH,Hz Hs
—dy g2 0 otherwise. g3 hs i3
0 01
I3 if a3 >0 and d3 > 0,
100
0-10 ifas >0 and d3 <0
001
He— —-100 ‘
010 ifas3 <0 and d3s >0
001
-1 00
0 -10 otherwise.
0 01




with g} = m and b}, = m, u; and v; such that u;g; + v;h; =

ged(gq, hi). dy = Wi,ez)’ €y = ged(doeyy 9nd p2, g2 such that pady + qaen
ng(dQ,eg).

Proof. We do not give here all the details of the Hermite Normal Form in 3-
D (very similar to the 2-D case). Using the notations of the lemma, we can
check that: each matrix is such that each matrix H; is such that |det(H;)| = 1.
Furthermore, we can check that each matrix H; (i € {1,...3}) eliminates one
coefficient leading to an upper triangular matrix.

Finally, the last matrix H, is here to make the diagonal coefficient positive.[]

A.16 Theorem [11l

Proof. Since a > 0 (Hermite Normal Form), we have ap, > 0. First, MU =

awy, ahw ap
TY=| 0 | = 0 | =w| 0 | Let X € Z?,
0 0 0
M(X -U)+V

=MX+V-MU

[MX+V} {MX+V} Ch
=w + —wl| 0
@ 0
o [[AVT ) ) s f X
B w 0 w
ap
Hence, [M] = (Mx+v] g | and {w} _ (Mxavy

0
Let (i,j,k) € Z*, if X € Pija,jk, we have X — U € P, and therefore
Pyt o, .k = P ji. This also gives the vector of translation : X — (X —U) =U

A.17 Theorem 12|

Proof. Let us first prove that oy, divides . Using Def. [8] we have V(i,7, k) €

Z37-Pi+o¢0,j,k = TUPi,j,k Given (Z',j7 ]{3) S ZS, X e Pprao’j’}g and X' = X — U, we
x

have X' € P; ;) and {45V 4 = {W} If we denote H™'U = [y |, we
z



obtain
T ly|=MU=MX-X')

= (MX+V)— (MX'+V)

i+ g ) @
=w J —wlj]l=wl 0],
k k 0

which implies
ax + by + cz = way
ey+ fz=0 . (13)
iz =0

Thanks to the Hermite Normal Form, ¢ # 0, hence we have z = 0. Then,

113) = axr + by = way
ey =0

but e # 0, hence y = 0. Then,
ar = wag = apr = whap = ay|wyag, or ged(aj,wy) =1.
Thanks to the Gauss Theorem, a’h|a0 and thus ap|ag. Finally, by definition

of g, ay = .

A.18 Theorem [13|
Proof. First, since d > 0, we have a,, > 0.

—aduy + bwal,

MU =TY = dw!l,
0

—al,bw! uy + bwl o, bw! (—aluy + o)

== d;wa; = Wy
0 0

bw, whlvy Pwvy —Bo

= WOy, = Wy = w Qlyy
0 0 0
—Po M(X %
Hence, [M<X;U>+V} = [xv] (g, | and {(—va} _ (uxevy
0

Let (i,j,k) € Z3, if X € P, jta,k we have X — U € Piyg, ;x and therefore
P jtay.k = Pitp,,j k- This also gives the vector of translation : X —(X-U) = UO



A.19 Theorem [14
Proof. Let us first prove that « divides a; . Using Def. E[, we have
V(i,j, k) € ZB’ Pi,j+a1,k = TUI Pi—i—ﬁé,j,k

Let (i,j,k) € Z3, X € Pijta,k and X' = X — Uy, then X' € Piyp1 .k and

{W} = {W} Let us denote

T
H71U1: Y
z
Hence,
T
Tl ly|=MU=MX-X")Y=MX+V)-(MX"+V)
z
i i+ 0 —6
=wl|jtou|-—w J =w| a1 |,
k k 0

which implies

azx + by + cz = —w}

dy + ez =wa (14)
fz=0
(14) = =z =0,

=dly = w,a
= d) |wlay, or ged(d),wl) =1
= d;\al

Let ay = d'aj, then we have y = w/ &, we have

ax + bwl o) = —wph}

= a x4+ pa) = —w!'Bs

= o = ged(al,wl)|pal, or ged(al,,p,wl) =1
= ajla)

= aylag

Finally, by definition of a1, o, = 1.0



A.20 Theorem [15]

Proof. Since f > 0, then ag > 0.

MU =TY

—a'ug — boui o] + bkm + cwlal

= —d¢u1ad =+ dk‘m + ewdad
fwaag

_Cld’(/)’l,LQ — b¢u1ad + bkm + Cu.)dOéd

= 7dd6wd'll,10[d +dkm +ewdad

flwal,

*T,Z}( — XV2 — wg’wQ) — b¢ulo¢g + bkm

+ewlal;
= —ewl(ged(d), wl) — wlivi)al] + dkm
—&—ew;a;

wag
—pal] + w/ﬁw + ' wws - bouy o)
—bwlvgﬁ + cw(’ioz:i
- —ewly ged(d, wl)al] + ¢wuial] +d, k‘m
+ewlal) ged(d)), wlj)

wag
—(ewy ged(dl, wl) — bouq )al] + ' wwe — bpui el 3
+ewgag ged(dg, wi) | _ ’
B —wp —w|—h
aq
wog
—p
Hence {M(X_UHV} = [MZHY] - —ﬁ(l) and {w} = [MX+v)

Let (i,j,k) € Z3, if X € P, j ktay, we have X — U € Piig, j+5 k and therefore
P; j ktaq = Pitgy,j+8:,k- This also gives the vector of translation : X —(X -U) =
vd

A.21 Theorem [16]
Proof. Let us first prove that ay divides ay . Using Def. [§] we have

(i, j, k) € Z°, P jktar = T, Py gz j1p2



Let (i,j,k) € Z3, X € P, jkta, and X' = X — Uy, then X' € Piyp2 jyp2 and

{W} = {W} Let us denote

x
H71U2: Y
z
Hence,
T
Tly| =MU;=M(X-X')
z
i i+ 33
=(MX+V)-(MX'+V)=w| j —w|j+p8E
k+ as k
-5
=w |61,
o
which implies
ax +by +cz = —wB
dy +ez = —wi3? . (15)

fz=was

Eq.[15) = fiz = wiao
~ flwhaz, or ged(Fwl) =1
= falaz
with as = f'af, we have z = w)ja5, and
= dy + ewhah = —wB?
= dgy + ¢ay = —w B}
= ged(dy, wy)|pay, or ged(dy, ¢,wj) =
= ged(dy, wy)|oh
With of = ged(d)}, wlj)as, we have
= dgy +wif = —pged(dy, wy)os,

or dy(—pazur) + wg(—pazvr) = —¢ ged(dy, wy)os,

d/ W”
= m(y + paguy) = m(ﬁ? + ¢ged(dy, wly)ay)
W | d,

//) (y + (bagul)a
d

ged(dly, wl) ged(dl, w

! 1
d wy

ged(d), ) ged(dl, )

or ged( ) =1,



1
Wq

= WW + payuy)
4

o
w3 2y = oo + Vo
w:j/ V] 2
1" !

= ar — b(ZSO[QUl + bk m —+ C(J.JdO[2 = —(JJﬂO,

1"
= ax — buialy + bk’w + cw!y ged(dly, W) aly = —wfo,

da

b 1

:>a/.’1;+wa +le+ ﬁo_o
= ajr +Ex+ w62 = -,
= a:i/ = ng(ad7X7wg/)|w/O/2/a or ng(ad7’(/)7X? Hl) = 1a
~ ajof.
= aglas

Finally, by definition of as, ag = as.[d

A.22 Super-paving construction details

Using Theorems [5] and [6] we have

lem(ag, aq, a9)

lem(ayg, ag, a9)

lem(ayg, aq, a9)

00 = ;91 = V1 —
(7)) (5] (65)
and
T
P=<H|y]| /A, <z< B Al(2) <y < Bj(z) and Aj(y,z) <z < By(y, 2)
z
with
A/2 _ 9210 32 —Ww ICII’I(O[(), an, Ckz) + 9210
Oof 0o f
O1ko + 01ez —wlem(ag, aq, a2) + 01ko + O1ez
/ _ B _ _ s
AI(Z) |: 01d :| I 1(2) |: Hld
Ag(:% Z) __ 90j0 + Goby —+ 9002 7Bé(y, Z) _ —Ww ICIH(OL(), Qaq, 012) + OOjO —+ 00by + 9062
Boa Hoa
Hence, A, = — {%0] ( ) = — [BFEE] Ay, 2) = — JOH}%}’ By =
Ay + 252, Bi(z) = Ai(2) + #3*, and By(y, 2) = Ag(y, z) + <52




Furthermore, using minimal periodicity notations, we have

wlem(ag, 01, 2)  was  whag

=== =w,oh €Z
0o f / In me
wlem(ag, a1, 0)  way  whag ,
01d d - Ta s
wlem(ag, a1, ) _wag _ w(’ifxo s
Ooa a al,
Thus, we obtain
wlem(ag, a1, as) [lo] wae
B/ _ ) ) _ — A/ + ==,
2 2 f f 2 f
wlem(ag, o, a2) ko + ez wa
B/ — i i _ :A/ e
1(2) 91d d I(Z) + d
1 j b
Bj(y,2) = = Cmmzyam) - [JO vy } = Ajly, )+ =2

A.23 Proposition

Proof. The number of pavings of the initial period is equal to the number of
points in the super-paving. Hence,

wag way wag w  wged(al,,w)) wged(al, x, wl") ged(d), W)
a d f  ged(e,w) ged(d,w) ged(f,w)
w weged(a,w) weged(aly, x,wl’) ged(d, w)

- ged(a, w) ged(d,w) ged(a, bw),w) ged(f,w) ged(d, ew)), w)

w wged(al, x,wl)
=w
ged(a, bwy,, w) ged(f, w) ged(d, ewy, w)
=] wged(al, x,wl)
ged(a, bw!, w)

bw//
wged(a, FEEICAPAR w)

w bw!!
ged(a, bma w) ged(a, ¥, w, WM)

bw
o w ged (@, zatimy @)
= wdwd w bwy/
W -
ged(a, baeatzay @) ged(a ¥, v, goqaromy)
w
! 12
= WaWq bw(’;
ged(a, ¥, v, s zyy)
= wdwgwgl
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